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300 Introduction to Möbius Differential Geometry, U. HERTRICH-JEROMIN
301 Stable Modules and the D(2)-Problem, F.E.A. JOHNSON
302 Discrete and Continuous Nonlinear Schrödinger Systems, M.J. ABLOWITZ, B. PRINARI & A.D. TRUBATCH
303 Number Theory and Algebraic Geometry, M. REID & A. SKOROBOOATOV (eds)
304 Groups St Andrews 2001 in Oxford Vol. 1, C.M. CAMPBELL, E.F. ROBERTSON & G.C. SMITH (eds)
305 Groups St Andrews 2001 in Oxford Vol. 2, C.M. CAMPBELL, E.F. ROBERTSON & G.C. SMITH (eds)
306 Peyresq lectures on geometric mechanics and symmetry, J. MONTALDI & T. RATIU (eds)
307 Surveys in Combinatorics 2003, C.D. WENSLEY (ed)
308 Topology, geometry and quantum field theory, U.L. TILLMANN (ed)
309 Corings and Comdules, T. BRZEZINSKI & R. WISBAUER
310 Topics in Dynamics and Ergodic Theory, S. BEZUGLYI & S. KOLYADA (eds)
311 Groups: topological, combinatorial and arithmetic aspects, T.W. MÜLLER (eds)
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Preface

This volume is the proceedings of a workshop on ‘Number Theory and Poly-
nomials’ held at Bristol University, 3–7 April 2006, with about fifty partici-
pants. The workshop was the first in a series of workshops sponsored by the
Heilbronn Institute for Mathematical Research. During the meeting, the par-
ticipants exchanged lectures, had informal discussions, and posed problems
in the broad subject area defined by the theme of the workshop. Some of the
articles in these proceedings are, in whole or in part, the direct outcome of
questions posed and ideas raised during the workshop.

The meeting and the proceedings shared the aim of bringing together
number-theorists with varied backgrounds having a common interest in prob-
lems concerning polynomials. Many of the overseas participants were sup-
ported by the Heilbronn Institute for Mathematical Research. The articles in
the proceedings are not intended to be a record of the lectures at the meeting:
some of the papers are more extensive than the corresponding talks, some of
the talks are not represented by papers, and non-speakers were also invited
to submit papers on the theme of the workshop. Expository papers and sur-
veys were encouraged, and many of the submissions are of this form. It is
hoped that this collection of papers will form a useful resource for new and
old researchers in the field.

The papers in the proceedings were refereed individually to a high standard,
and not all submissions were accepted. We take this opportunity to thank
the small army of referees who gave of their time and expertise so willingly.
We are grateful to all the participants, to the speakers, to the authors of the
papers, to the London Mathematical Society, to the staff at Bristol University,
and to the Heilbronn Coordinator, Cathy Badley.

James McKee
Chris Smyth

Royal Holloway and Edinburgh, April 2007.
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Université de Metz, Ile du Saulcy, 57045 Metz Cedex 01, France.
rhin@math.univ-metz.fr

Andrzej Schinzel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8,
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THE TRACE PROBLEM FOR TOTALLY POSITIVE
ALGEBRAIC INTEGERS

JULIÁN AGUIRRE AND JUAN CARLOS PERAL,
WITH AN APPENDIX BY JEAN-PIERRE SERRE

Abstract. Suppose that P (x) = xd + a1x
d−1 + · · · + ad is a polynomial

with integer coefficients, irreducible, and with all roots real and positive.
In a remarkable paper of 1918, I. Schur proved that if c <

√
e, then there

are only finitely many such polynomials for which the average of the roots,
equal to −a1/d, is less than c. The Schur-Siegel-Smyth trace problem asks
for the largest value of c for which the same conclusion holds. In this paper
we give an account of the history of the problem, the latest results, and
its relations with other problems in number theory.

1. Introduction

An algebraic number is a complex number α that satisfies a polynomial
equation

a0x
n + a1x

n−1 + · · · + an−1x + an = 0,

where the coefficients ak ∈ Z, the ring of integers. If the leading coefficient
a0 equals 1, then α is said to be an algebraic integer. The set of all algebraic
numbers is a field, while the set of all algebraic integers, that we shall denote
by A, is a ring. Given α ∈ A there is a unique monic polynomial P ∈ Z[x],
the ring of all polynomials in one indeterminate with integer coefficients,
such that both P (α) = 0, and also if Q ∈ Z[x] is such that Q(α) = 0, then P
divides Q in Z[x]. This polynomial P is irreducible, and is called the minimal
polynomial of α; its degree is called the degree of α.

Let α be an algebraic integer of degree d and let P (x) = xd+a1x
d−1+· · ·+ad

be its minimal polynomial. Then P has d different roots α1, . . . , αd, which
are called the conjugates of α. We have

P (x) = (x − α1) . . . (x − αd).

If all the conjugates of α ∈ A are real, then α is said to be totally real ; if they
are all positive, then α is said to be totally positive. The set of all totally
positive algebraic integers will be denoted by A+.

2000 Mathematics Subject Classification. 11R06.
Key words and phrases. Totally positive algebraic integers, Schur-Siegel-Smyth trace

problem.
J. Aguirre supported by grant 9/UPV127.310-15969/2004 of the Universidad del Páıs
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2 The trace problem

Associated with α ∈ A there are several quantities of interest in algebraic
number theory, among them the trace

Trace(α) =
d∑

k=1

αk = −a1,

the norm

Norm(α) =
d∏

k=1

αk = (−1)dad,

and the discriminant

Disc(α) = ∆(α1, . . . , αd),

where ∆ is the function defined by

∆(x1, . . . , xd) =
∏

1≤i<j≤d

(xi − xj)
2. (1)

For a monic polynomial P ∈ Z[x], Trace(P ), Norm(P ) and Disc(P ) are de-
fined as Trace(α), Norm(α) and Disc(α), where α is any root of P . It is
clear that the trace and the norm are integers, and it turns out that so is the
discriminant. The resultant of two polynomials P (x) = a0x

n + · · · + an of
degree n and Q(x) = b0x

m + · · · + bm of degree m is defined as

Resultant(P,Q) = am
0

∏
P (x)=0

Q(x),

that is, am
0 times the product of the values of Q on the roots of P . If P and Q

have integer coefficients, then Resultant(P,Q) is also an integer. Moreover,
Resultant(P,Q) = 0 if and only if P and Q have a common root. In particular,
if P,Q ∈ Z[x] are coprime, then

∣∣Resultant(P,Q)
∣∣ ≥ 1. All the above facts

about algebraic integers can be found in any text on algebraic number theory,
for instance [3].

We shall also use the family of measures defined by

Mp(α) =
(1

d

d∑
k=1

|αk|p
)1/p

, p > 0.

If α ∈ A+, then Trace(α) = d ·M1(α). It follows from the inequality between
the arithmetic and the geometric means that

Mp(α) ≥
∣∣Norm(α)

∣∣1/d
,

and thus that Mp(α) > 1 unless α = 0 or α = ±1. The spectrum of the
measure Mp is defined as the set

Tp = {Mp(α) : α ∈ A+, α �= 1 }.
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For each positive integer n, θn = 4 cos2
(
π/(2 n)

)
∈ A+. Its minimal poly-

nomial is a factor of

Pn(x) = x[n/2] +

[n/2]∑
k=1

(−1)k n

k

(
n − k − 1

k − 1

)
x[n/2]−k

= x[n/2] − nx[n/2]−1 +
n(n − 3)

2
x[n/2]−2 − · · · ± a[n/2],

where [ · ] is the integer part function, a[n/2] = ±2 if n is even, and a[n/2] = ±n
if n is odd. Eisenstein’s irreducibility criterion implies that if n is an odd prime
or a power of two, then Pn is irreducible. It follows that M1(θp) = 2 p/(p− 1)
if p is an odd prime, and M1(θ2n ) = 2 for all positive integers n. Thus
2 is a limit point of T1, and there is an infinite number of totally positive
algebraic integers, of different degree, for which the value of M1 is 2. The
Schur-Siegel-Smyth trace problem, as stated by Peter Borwein in [4], is the
following.

Schur-Siegel-Smyth Trace Problem. Given any ε > 0, prove that the set

{α ∈ A+ : M1(α) < 2 − ε }
is finite, and if possible, find all its elements.

In other words, the problem asks whether 2 is in fact the smallest limit
point of T1. A more general form of the problem is to find the structure of
T1. Of course the same problem can be posed for each of the sets Tp, p > 0,
but our main concern will be with the case p = 1.

Sometimes the problem is stated for the class of totally real algebraic in-
tegers instead of for the class of totally positive algebraic integers. However
both problems are equivalent, since if α is totally real, then α2 ∈ A+ and

Mp(α
2) =

(
M2p(α)

)2
.

The rest of the paper is divided into four sections and two appendices.
Section 2 is devoted to the work of I. Schur, C.L. Siegel and C.J. Smyth on
the trace problem. In Section 3 we explain the method of auxiliary functions
and give the best results known. Section 4 deals with the relation between the
trace problem and the integer Chebyshev problem, and Section 5 is dedicated
to the special case of cyclotomic algebraic integers. Appendix A gives the
best result, as far as we know, for the trace problem. Appendix B contains a
letter from J.-P. Serre to C. Smyth.

Acknowledgements

We wish to thank C.J. Smyth for providing us with a copy of J.-P. Serre’s
letters, and for several suggestions that have resulted in an improvement of
the paper. We also wish to thank J.-P. Serre for kindly giving permission to
publish his letter to Smyth as Appendix B, as well as for his suggestions for
putting it into context.



4 The trace problem

2. Earlier results

In this section we describe the results obtained by I. Schur, C.L. Siegel and
C.J. Smyth.

The work of I. Schur. The first result on the trace problem appears in
I. Schur’s 1918 paper [15], and is based on the following inequality for the
function ∆ defined in (1):

Theorem (Schur [15, Satz II]). The maximum of ∆(x1, . . . , xd) over the set
of real n-tuples (x1, . . . , xd) such that x2

1 + · · · + x2
d ≤ 1 is

µd = (d2 − d)−
1
2 (d2−d)

d∏
k=2

kk.

It follows from Euler’s summation formula that

d∏
k=2

kk = e
∑d

k=2 k log k = O
(
d

1
2 (d2+d)+ 1

12 e−
d2
4
)
,

and then

µd = O
(
d

1
2 (3d−d2 )+ 1

12 e−
1
4 (2d−d2 )). (2)

Schur considers next totally real algebraic integers α of degree d, with
minimal polynomial xd + a1x

d−1 + · · ·+ ad, and such that α2
1 + · · ·+ α2

d ≤ γ d
for some γ > 0. The definition of the discriminant implies that Disc(α) > 0,
and since the discriminant is an integer, we have

1 ≤ Disc(α) ≤ (γ d)
1
2 (d2−d)µd = O

(
e

d
4 dd+ 1

12 (e−
1
2 γ)

1
2 (d2−d)). (3)

If γ <
√

e = 1.648721 . . . , then the right hand side of (3) converges to zero as
d goes to infinity. Since on the other hand Disc(α) ≥ 1, there exists a positive
integer d0 such that d ≤ d0. Moreover, |αk| ≤

√
γ d for 1 ≤ k ≤ d. Thus

|ak| =
∑

1≤i1 <i2<···<ik≤d

αi1 αi2 . . . αik ≤
(

d

k

)
(γ d)

k
2 .

This concludes the proof of the following:

Theorem (Schur [15, Satz VIII]). Let γ be a positive constant such that
γ <

√
e. Then the number of totally real algebraic integers α such that

a2
1 − a2 =

α2
1 + · · · + α2

d

d
≤ γ

is finite.

Finally, using the observation made in the introduction, this theorem is
restated as:
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Theorem (Schur [15, Satz XI]). Let γ be a positive constant such that
γ <

√
e. Then the number of totally positive algebraic integers α such that

α1 + · · · + αd

d
≤ γ

is finite.

The work of C.L. Siegel. The next advance is due to C.L. Siegel in his 1945
paper [16]. The first result in the paper is an improvement of the classical
inequality between the arithmetic and the geometric means involving the
function ∆. Given an integer d ≥ 2 define a polynomial P and a rational
function Q by

P (t) =
1

d!

d−2∏
k=0

( t + k

d − k

)d−k−1
, Q(t) =

d−1∏
k=1

(
1 +

d − k

t + k − 1

)
.

Theorem (Siegel [16, Theorem I]). Let x1, . . . , xd be positive real numbers
such that ∆(x1, . . . , xd) �= 0, and let µ be the unique positive solution of the
algebraic equation

P (µ) =
(x1 . . . xd)

d−1

∆(x1, . . . , xd)
;

then (x1 + · · · + xd

d

)d

≥ Q(µ) x1 . . . xd. (4)

The polynomial P has positive coefficients and P (0) = 0, so that µ is
well defined. Since moreover Q(µ) > 1, (4) is in fact an improvement of the
arithmetic-geometric inequality. If α ∈ A+, (4) can be rewritten as(

M1(α)
)d ≥ Q(µ) Norm(α),

where µ is the unique positive solution of P (µ) = Norm(α)d−1/ Disc(α). Since
Norm(α) is positive, it follows that(

M1(α)
)d(d−1) ≥ Disc(α)P (µ)Qd−1(µ). (5)

This inequality is the starting point for the proof of the following two theorems
dealing with the trace problem.

Theorem (Siegel [16, Theorem II]). Let ϑ be the positive root of the tran-
scendental equation†

(1 + ϑ) log(1 + ϑ−1) +
log ϑ

1 + ϑ
= 1,

and let λ0 = e(1 + ϑ−1)−ϑ = 1.7336 . . . . Then for any λ ∈ (1, λ0) the set

{α ∈ A+ : M1(α) < λ }
is finite.

†There is a misprint in the paper. The ‘−’ on the left hand side should be a ‘+’.
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Theorem (Siegel [16, Theorem III]). The only α ∈ A+ with M1(α) ≤ 3/2
are α = 1 and α = (3 ±

√
5)/2, the roots of the polynomial x2 − 3 x + 1.

These theorems imply in particular that 3/2 is the smallest point in T1

and that it is isolated. Siegel finds remarkable that they imply a refinement
of Minkowski’s inequality between the discriminant and the degree of totally
real algebraic fields of sufficiently large degree.

The work of C.J. Smyth. Stimulated by McAuley’s Master Thesis [12],
C.J. Smyth carries out in his 1984 paper [19] a detailed analysis, both the-
oretical and numerical, of the structure of the sets Tp for p > 0 (defined in
terms of totally real instead of totally positive algebraic integers). His main
result for the case p = 1, translated to the language we have been using, is
as follows.

Theorem (Smyth [19, Theorem 1]).

(1) The smallest three elements of T1 are isolated, and are the only ele-
ments of T1 in the interval (1, 1.7719):

(1, 1.7719) ∩ T1 =
{ 3

2
,
5

3
,
7

4

}
.

These values are M1(α), where α ∈ A+ is a root of one of the poly-
nomials x2 − 3 x + 1, x3 − 5 x2 + 6 x − 1, x4 − 7 x3 + 13x3 − 7 x + 1,
x4 − 7 x3 + 14 x3 − 8 x + 1.

(2) The set T1 is dense in [ 2, +∞).

From this theorem we see that the structure of T1 is undetermined only
in the interval (1.7719, 2). Let us remark again that Smyth proves similar
results for all p > 0.

The ideas for proving the above theorem had already been developed by
Smyth in [17, 18] to treat the corresponding problem for the measure

Ω(α) =
( d∏

k=1

max
(
1, |αk|

))1/d

.

The methods for proving (1) and (2) are quite different. We will explain with
some detail in the next section the method used to prove (1), known as the
method of auxiliary functions, which can be applied to a large class of prob-
lems in the theory of polynomials with integer coefficients. Whereas Schur’s
and Siegel’s results were based on inequalities for the discriminant of an al-
gebraic integer, the method of auxiliary functions exploits an inequality for
the resultant of two polynomials, one of them being the minimal polynomial
of an algebraic integer.
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3. The method of auxiliary functions

Suppose that somehow we are able to find a polynomial Q ∈ Z[x] and real
constants y > 0, c such that

x − y log |Q(x)| ≥ c for all x > 0. (6)

If α ∈ A+ has conjugates α1, . . . , αd, then

αk − y log |Q(αk)| ≥ c, 1 ≤ k ≤ d.

Adding these inequalities and dividing by d we get

M1(α) ≥ c + y log
∣∣∣

d∏
k=1

Q(αk)
∣∣∣ = c + y log |Resultant(P,Q)|,

where P is the minimal polynomial of α. If Q(α) �= 0, then

|Resultant(P,Q)| ≥ 1

and M1(α) ≥ c. Thus inequality (6) implies that

(1, c) ∩ T1 ⊂ {M1(α) : Q(α) = 0 },
and in particular that (1, c) ∩ T1 is finite. Define the constant K as

K = sup
Q∈Z[x], Q �=0, y>0

{
inf
x>0

(
x − y log |Q(x)|

)}
. (7)

Reasoning as above, it is easy to see that

(1, c) ∩ T1 is finite for all c < K.

What Smyth did to prove the first part of his theorem is to compute explicitly
a polynomial Q ∈ Z[x] and a constant y > 0 such that

x − y log |Q(x)| ≥ 1.7719

for all x > 0, proving that K > 1.7719.
How does one find such Q and a? In practice, one chooses N irreducible

polynomials Qi ∈ Z[x] and solves the optimization problem

sup
{

min
x>0

(
x −

N∑
k=1

ck log |Qk(x)|
)}

, (8)

where the supremum is taken over all N -tuples (c1, . . . , cN ) ∈ RN with ck > 0

for 1 ≤ k ≤ N . The function x −
∑N

k=1 ck log |Qk(x)| is called an auxiliary
function. The method can be adapted to study other measures. For instance,
if we change x to xp, p > 0, then we obtain results about the sets Tp; changing
x to max(0, log x) will provide information on the spectrum of the Mahler
measure. It should be noted that in Smyth’s original approach, (8) appears
as the dual of another optimization problem on the set of all probability
measures on (0, +∞).
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When we apply the method of the auxiliary functions we are confronted
with two different problems:

(1) Find appropriate polynomials Qk.
(2) Once the polynomials have been chosen, find the values of the coeffi-

cients ck that maximize (8).

The polynomials. To apply the method of auxiliary functions, one needs
to choose the polynomials Qk in (8). There are heuristic rules to select them:

• They should have positive roots.
• They should have small coefficients.
• They should have small trace. The reason for this is the following:

to prove that M1(α) < c, all polynomials of degree d whose trace is
smaller than c · d must appear in (8).

For small positive integers d and T , it is possible to give a complete list
of all monic irreducible polynomials with integer coefficients, positive roots,
degree d and trace T . In [20] a complete list of such Q ∈ Z[x] with

Trace(Q) − deg(Q) ≤ 6

is given, and all Q ∈ Z[x] with deg(Q) = 10 and Trace(Q) = 18 are listed
in [13]. Table 1 gives for each 1 ≤ d ≤ 10 the smallest possible trace T of
a totally positive algebraic integer of degree d, the corresponding value of
M1, and the number Nd of monic irreducible polynomials with positive roots
having such degree and trace. Some of them appear in Table 2.

Table 1. Number of polynomials of a given degree and trace
as small as possible

d T M1 Nd

1 1 1.000 1

2 3 1.500 1

3 5 1.660 1

4 7 1.750 2

5 9 1.800 4

6 11 1.833 11

7 13 1.857 40

8 15 1.875 151

9 17 1.889 686

10 18 1.800 3

Smyth’s theorem is used by O. Debarre in [7] to prove a result on curves
on simple abelian varieties. He also conjectures that if α ∈ A+ is of degree d,
then Trace(α) ≥ 2 d − 1, and if equality holds, then Norm(α) = 1. The first
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part of the conjecture is false, since by Corollary 3 in [14], for infinitely many
d there exists α ∈ A+ with

deg(α) = d and Trace(d) ≤ 2 d − 1

4

log log d

log log log d
.

The smallest d such that there exists α ∈ A+ of degree d and

Trace(α) < 2 d − 1

is d = 10. The second part of the conjecture does not hold either, as is shown
by the polynomial

x8 − 15 x7 + 89 x6 − 268 x5 + 438x4 − 385 x3 + 169x2 − 32 x + 2.

The optimization algorithm. Once the polynomials Qk have been chosen,
it remains to find the coefficients ck that maximize (8). This can be done by
semi-infinite linear programing, as in [19], or by a variant of the second Remes
algorithm, as in [1].

Latest results. New polynomials, better optimization algorithms and more
powerful computers have produced a series of improvements in the trace prob-
lem:

• K > 1.7735 (1997, Flammang, Grandcolas & Rhin [8]),
• K > 1.7783 (2004, McKee & Smyth [13]),
• K > 1.7800 (2006, Aguirre, Bilbao & Peral [1]),
• K > 1.7822 (2006, Flammang, personal communication to C. Smyth),
• K > 1.7836 (2006, Aguirre & Peral [2]).

The best current result as far as we know∗ is K > 1.784109 and is due to the
authors. It is included in Appendix A.

Considering for ξ > 0 the optimization problem

sup
{

min
x>ξ

(
x −

N∑
k=1

ck log |Qk(x)|
)}

(9)

instead of (8), it is possible to obtain a different type of inequality for the
trace of α ∈ A+ with conjugates α1 < α2 < · · · < αd:

• M1(α) > 1.60 + α1 (1997, Flammang, Rhin & Smyth [9]),
• M1(α) > 1.66 + α1 (2006, Aguirre, Bilbao & Peral [1]).

These inequalities hold for all α ∈ A+ except for 26 explicit exceptions and
their integer translates.

∗Added in proof: V. Flammang has proved recently that K > 1.78702.
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The limits of the method. How far is it possible to go with the method of
auxiliary functions? Is it possible to solve the trace problem? Unfortunately
the answer is no.

C. Smyth proved in [21] that K < 2 − 10−41. This was then improved by
J.-P. Serre in a private letter (24 February 1998) to Smyth, whose contents
appear as Appendix B. Serre proves that if Q is a polynomial with real co-
efficients with leading and constant coefficients of modulus at least 1, and if
y > 0, z > 0, c ∈ R are constants such that

x − z log x − y log |Q(x)| ≥ c for all x > 0, (10)

then c ≤ 1.898302 . . . . It follows that

K ≤ 1.898302 . . . . (11)

Since Serre’s result is for polynomials with real coefficients, it is possible that
the inequality is in fact strict. We see from (11) that it is impossible to
show using the method of auxiliary functions that (1, c) ∩ T1 is finite for any
c ≥ 1.898302 . . . . Moreover, to prove for instance that (1, 1.89)∩ T1 is finite,
the sum in (8) should include all the polynomials referred to in Table 1. We
believe that the computational problem is intractable, and will remain so for
a long time.

In a subsequent letter (31 March 1998) Serre proved that the upper bound
for c is optimal. For any c < 1.898302 . . . there exist constants y > 0, z > 0,
and a polynomial

Q(x) =

n∏
k=1

(x − λk), λk ∈ [ a, b ],
n∏

k=1

λk ≥ 1,

where a = 0.08735 . . . , b = 4.41107 . . . , such that (10) holds.
For optimal c, the corresponding values of y and z are y = 1.628472 . . . and

z = 0.620741 . . . . The extremal situation is described by a measure, giving
the limiting density function of the zeroes of a sequence of real polynomials
Qn whose degrees go to infinity with n. This measure has support on the
interval [ a, b ], and is obtained by projecting the uniform probability measure
on the unit circle to [ a, b ]. The result is that, with this optimal choice,

fopt(x) = x − z log x −
∫ b

a

log |x − y|
√

(y − a)(b − y)

π y
dy.

This function is constant on [ a, b ], equal to 1.898302 . . . , and increases to
infinity both as x → 0 and x → ∞. See Figure 1, where fopt is compared
with the auxiliary function of Appendix A.

Serre’s interest in the problem comes from its connection with the counting
of points on curves over finite fields. For a curve C of genus g over a finite
field Fq , the number of points of C in Fq is given by Weil as q + 1− trace(P ),
where P is a monic integer polynomial of degree g having all its roots in the
interval [−2

√
q, 2

√
q ]. The roots of P are of the form π + π̄, where the π, of
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a b

1.7841

1.8983

Figure 1. The optimal function fopt and the auxiliary func-
tion of Appendix A.

modulus
√

q, are the eigenvalues of the Frobenius map on the Jacobian of C.
Thus by a suitable integer translation, the number of points can be expressed
in terms of a sum of traces of totally positive algebraic integers whose degrees
sum up to g. See [11] for details.

4. The trace problem and the integer Chebyshev problem

Given N ∈ N and a compact interval [ a, b ] ⊂ R (or in general, a compact
subset of the complex numbers), the integer Chebyshev problem asks for the
polynomial of degree N with integer coefficients of minimal uniform norm
on [ a, b ]. Let

tZ(a, b) = inf
N∈N

(
min

{
sup

a≤x≤b
|P (x)|

1
deg(P ) : P ∈ Z[x], P �= 0, deg(P ) ≤ N

})
.

The constant tZ(a, b) is known as the integer Chebyshev constant of the in-
terval [ a, b ]. If b− a ≥ 4, then tZ(a, b) = (b− a)/4, but no exact value of the
integer Chebyshev constant is known for any interval of length less than 4.
The connection between the integer Chebyshev problem and the trace prob-
lem for totally positive algebraic integers is explained in [1, 2, 5, 9]. More
precisely, we have the following result.

Theorem (Borwein and Erdélyi [5, Proposition 4.1]). Suppose that m is a
positive integer and that

1 < δ <
1

tZ(0, 1/m)
− m.

Then the set (1, δ) ∩ T1 is finite.

We see that it is possible to obtain results about the trace problem from
estimates of the integer Chebyshev constant of intervals [ 0, 1/m ]. As the fol-
lowing theorem shows, the constant K is also related to the integer Chebyshev
problem.
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Theorem (Aguirre and Peral [2, Corollary 2]). If m is a positive integer,
then

1

K + m
< tZ(0, 1/m) <

1

1 + m
and lim

m→∞

( 1

tZ(0, 1/m)
− m

)
= K.

These are not the only relations between the two problems. Estimates
for the integer Chebyshev constant of intervals [ p/q, r/s ] with q r − p s = 1
(called Farey intervals) can be obtained from the auxiliary function

log(x + s/q) −
N∑

k=1

ck log |Qk(x)|

(see [2]). The same algorithms and computer code developed for the trace
problem can then be used for the integer Chebyshev problem.

5. Cyclotomic integers

A cyclotomic integer is an algebraic integer α in a cyclotomic field, that is,
there exists a root of unity ζ such that α ∈ Q(ζ), the smallest field containing
the rationals and ζ. If α is a cyclotomic integer, then |α|2 ∈ A+, and since
the Galois group G of Q(ζ) is abelian, |ασ |2 = (|α|2)σ for all σ ∈ G, where ασ

represents the action of σ on α. It follows that

M1(|α|2) =
1

|G|
∑
σ∈G

|ασ |2 =
1

|G|
∑
σ∈G

(|α|2)σ , (12)

where |G| is the order of G.
This property has been used by J.W.S. Cassels in [6] to settle a conjecture

of R.M. Robinson about sums of roots of unity. As part of the proof, Cassels
proves the following result.

Theorem (Cassels [6, Lemma 3]). Suppose that α is a cyclotomic integer
which is neither a root of unity nor representable as the sum of two roots of
unity. Then

M1(|α|2) ≥ 2.

Using this theorem it is possible to solve the trace problem for cyclotomic
integers, proving that 2 is the smallest limit point of

{M1(|α|2) : α is a cyclotomic integer }.
Identity (12) has been used jointly with lower estimates on the trace of

totally real positive algebraic integers to obtain results on the values of irre-
ducible characters of finite groups. If χ is an irreducible character of a finite
group G, then χ(g) is a cyclotomic integer for all g ∈ G. Problem (3.15) in
the book [10] asks for the proof of the following result, atributed to Thomp-
son: if χ is an irreducible character of the a finite group G, then χ(g) is either
zero or a root of unity for more than a third of the elements g ∈ G.
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Table 2. Values of ck and Qk in (14)

k ck Qk

1 0.5454395499 x

2 0.5063717310 1 − x

3 0.0794899337 2 − x

4 0.1888620827 1 − 3 x + x2

5 0.0214329965 1 − 4 x + x2

6 0.0112634625 2 − 4 x + x2

7 0.0809965525 1 − 6 x + 5 x2 − x3

8 0.0061468586 1 − 8 x + 6 x2 − x3

9 0.0052343340 1 − 9 x + 6 x2 − x3

10 0.0329631947 1 − 7 x + 13x2 − 7 x3 + x4

11 0.0293633546 1 − 8 x + 14x2 − 7 x3 + x4

12 0.0123766117 1 − 11 x + 29x2 − 26 x3 + 9 x4 − x5

13 0.0127623387 1 − 12 x + 31x2 − 27 x3 + 9 x4 − x5

14 0.0064234181 1 − 13 x + 32x2 − 27 x3 + 9 x4 − x5

15 0.0131772288 1 − 15 x + 35x2 − 28 x3 + 9 x4 − x5

16 0.0017897254 1 − 14 x + 51x2 − 72 x3 + 43x4 − 11 x5 + x6

17 0.0026454115 1 − 15 x + 59x2 − 78 x3 + 44x4 − 11 x5 + x6

18 0.0005943490 1 − 18 x + 63x2 − 79 x3 + 44x4 − 11 x5 + x6

19 0.0024309470 1 − 15 x + 71x2 − 144 x3 + 136x4 − 62 x5 + 13x6 − x7

20 0.0043077189 1 − 16 x + 78x2 − 157 x3 + 143x4 − 63 x5 + 13x6 − x7

21 0.0002265137 1 − 17 x + 81x2 − 158 x3 + 143x4 − 63 x5 + 13x6 − x7

22 0.0012139399 1 − 17 x + 82x2 − 159 x3 + 143x4 − 63 x5 + 13x6 − x7

23 0.0015863832 1 − 18 x + 89x2 − 172 x3 + 150x4 − 64 x5 + 13x6 − x7

24 0.0014865771 1 − 15 x + 83x2 − 220 x3 + 303x4 − 220 x5 + 83x6 − 15 x7 + x8

25 0.0026334873 1 − 24 x + 194x2 − 743 x3 + 1526 x4 − 1798 x5 + 1265x6

−537 x7 + 134x8 − 18 x9 + x10

26 0.0048437178 1 − 24 x + 200x2 − 766 x3 + 1560 x4 − 1822 x5 + 1273x6

−538 x7 + 134x8 − 18 x9 + x10

27 0.0032411370 1 − 24 x + 206x2 − 813 x3 + 1662 x4 − 1920 x5 + 1320x6

−549 x7 + 135x8 − 18 x9 + x10

28 0.0010061264 1 − 26 x + 265x2 − 1388 x3 + 4177 x4 − 7677 x5 + 8944x6

−6752 x7 + 3322x8 − 1050 x9 + 204x10 − 22 x11 + x12

29 0.0032149270 1 − 29 x + 314x2 − 1676 x3 + 5007 x4 − 9012 x5 + 10213 x6

−7474 x7 + 3561x8 − 1092 x9 + 207x10 − 22 x11 + x12

30 0.0012158245 1 − 32 x + 361x2 − 1941 x3 + 5726 x4 − 10061 x5 + 11086 x6

−7897 x7 + 3678x8 − 1109 x9 + 208x10 − 22 x11 + x12

31 0.0011466823 1 − 33 x + 377x2 − 2009 x3 + 5846 x4 − 10166 x5 + 11134 x6

−7908 x7 + 3679x8 − 1109 x9 + 208x10 − 22 x11 + x12
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Appendix A. The best lower estimate of the constant K
Theorem (Aguirre & Peral, 2007). We have

K > 1.784109 . (13)

Proof. It is enough to check the inequality

x −
31∑

k=1

ck log |Qk(x)| > 1.784109 for all x > 0, (14)

where the coefficients ck and the polynomials Qk are given in Table 2. �

Appendix B. The letter from J.-P. Serre to C.J. Smyth

Notation. P is a polynomial with real coefficients, satisfying conditions:

a) the highest coefficient of P has modulus ≥ 1;
b) the lowest coefficient of P has modulus ≥ 1.

p is the degree of P ; γ = v/p, where xv is the highest power of x dividing
P (x). R(x) = x−vP (x) and Q(x) = xpP (1/x).

We are interested in

x ≥ c + y log
∣∣P (x)

∣∣ for all x > 0,

and we write y as t/p. (The point of these conventions is that what is really
important is |P |1/ deg(P ).)

The basic inequality is

(1) x > c +
t

p
log

∣∣P (x)
∣∣ for all x > 0,

and one wants to show that this implies c < 1.9 (more precisely:
c < 1.8983021).

Of course, one can rewrite (1) as:

(2) x ≥ c + t γ log(x) + (1 − γ)t
1

q
log

∣∣R(x)
∣∣,

with q = deg(R) = p(1 − γ).
The strategy will be to prove two inequalities for c, namely:

(3) c/t ≤ 1 − log(t/2) − 1 + γ

2
log(1 + γ) − 1 − γ

2
log(1 − γ)

and

(4) c/t ≤ γ +
1 + γ

2
log(1 + γ) − 1 − γ

2
log(1 − γ) − γ log(2 t γ2).

For any γ, t call a(γ, t) = right side of (3), and b(γ, t) = right side of (4).
Define c(γ, t) by

(5) c(γ, t) = t · inf
(
a(γ, t), b(γ, t)

)
,
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so that we may sum up (3) and (4) as:

(6) c ≤ c(γ, t).

The last step will be to prove (with computer help):

(7) The upper bound of c(γ, t), for t > 0, 0 < γ < 1, is < 1.8983021.

This will complete the proof.
Let me give some details.

1. Integration formulae
I shall consider intervals (a, b), with 0 < a < b. I call L the capacity of such

an interval, i.e. (b − a)/4. On (a, b) I put the measure called ‘equilibrium
distribution’ in capacity theory. If one views the interval as the projection of
a circle in the plane, it is the image of the rotation invariant measure on the
circle, normalized so that its total mass is equal to 1. If f(x) is an integrable

function on the interval, I shall write
∫ b

a
f(x), or just

∫
f(x), for its integral

with respect to that measure. The few integration formulae I shall need are:

(8)

∫ b

a

log |x − λ| ≥ log L for every λ ∈ C.

(This follows from the very definition of the equilibrium measure.)
As a consequence, if K is a polynomial of degree k, with highest coefficient

of modulus ≥ 1, we have:

(9)

∫ b

a

1

k
log

∣∣K(x)
∣∣ ≥ log L.

The inequality (8) is in fact an equality when λ belongs to the interval. I
shall need an extra case, namely λ = 0:

(10)

∫ b

a

log x = log L + log
(
1 + u/2 +

√
u + u2/4

)
,

where u = a/L. (Remember that I am assuming a > 0.)
Moreover:

(11)

∫ b

a

x = (a + b)/2.

(Clear by using the symmetry around the middle of the interval.)

(12)

∫ b

a

1

x
= 1/

√
a b .

(This follows by a change of variables from 1
2 π

∫ 2π

0
dϕ

C+cos ϕ
= 1√

C 2−1
, C > 1.)



16 The trace problem

2. Proof of the first inequality
One integrates (2) over any interval (a, b) with 0 < a < b. If one defines u

by u = a/L and z by z = 1 + u/2 +
√

(u + u2/4), one gets:

(13) (a + b)/2 ≥ c + t γ(log L + log z) + t(1 − γ) log L,

i.e.

(14) c/t ≤ (a + b)/2 t − log L − γ log z.

It is convenient to write everything in terms of L > 0 and z > 1:
we have u + 2 = z + z−1, a = L(z + z−1 − 2), (a + b)/2 = (z + z−1)L, and

(14) becomes:

(15) c ≤ L(z + z−1) − t log L − t γ log z (for every L > 0, z > 1).

One now optimizes this inequality. It is not hard to see that the optimal
choice

(
for a given pair (γ, t)

)
is z =

√
(1 + γ)/(1 − γ), L = t

2

√
1 − γ2, which

corresponds to:

a = t
(
1 −

√
1 − γ2

)
, b = t

(
1 +

√
1 − γ2

)
.

Then (15) gives:

(16) c ≤ t − t · log

(
t

2

√
1 − γ2

)
− t γ · log

√
(1 + γ)/(1 − γ),

which is equivalent to (3).

2. Proof of the second inequality
Recall that P (x) = xγpR(x), where R is a polynomial with non-zero con-

stant term. Call Q the reciprocal polynomial. We have

(17) P (1/x) = x−pQ(x),

and the highest coefficient of Q has modulus ≥ 1 (this is where hypothesis
(b) is used). By writing 1/x instead of x in (1), we get:

(18) 1/x ≥ c − t log x +
t

p
log

∣∣Q(x)
∣∣,

which I prefer to write as:

(19) 1/x ≥ c − t log x + t(1 − γ)
1

q
log

∣∣Q(x)
∣∣,

where q = (1 − γ)p = deg R = deg Q.
As before, we integrate (19) over an interval (a, b), and we make the same

change of variables: u = a/L, z = 1 + u/2 +
√

(u + u2/4). The integral of

1/x is 1/
√

a b = 1/L(z − z−1), and we obtain:

(20) c ≤ 1/L(z − z−1) + t γ log L + t log z.
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If we make the optimal choice of (z, L), which is:

z =
√

(1 + γ)/(1 − γ), L = 1/t γ(z − z−1) =
√

1 − γ2/2 t γ2,

we get:

(21) c/t ≤ γ + γ log
(√

1 − γ2/2 t γ2
)

+ log
(√

(1 + γ)/(1 − γ)
)

,

which is equivalent to (4) .

4. Upper bound of c(γ, t)
It remains to determine the maximum of the function c(γ, t) defined by

formula (5):

c(γ, t) = t · inf
(
a(γ, t), b(γ, t)

)
,

where

a(γ, t) = 1 − log(t/2) − 1 + γ

2
log(1 + γ) − 1 − γ

2
log(1 − γ)

and

b(γ, t) = γ +
1 + γ

2
log(1 + γ) − 1 − γ

2
log(1 − γ) − γ log(2 t γ2).

Now t and γ are free variables, subject only to t > 0 and also 0 < γ < 1
(one could also accept the limiting cases γ = 0, 1: they give a poor value of
c, as may be expected). Since we can check that 1.898 . . . is a value of c, this
already gives a small variation range for t e.g. 1 ≤ t ≤ 3. (Indeed, one can
check that a(γ, t) < 1 − log(t/2) hence c(γ, t) ≤ t − t log(t/2). One is led to
check that t − t log(t/2) > 1.89 implies 1 ≤ t ≤ 3, which is true, with a lot
of room to spare.) This shows that the maximum of c(γ, t) occurs at some
interior point of the range.

The next remark is that neither t a(γ, t), nor t b(γ, t), have a maximum
inside the range. For t a, this is very simple, since the partial derivative
relative to γ is easily shown to be everywhere < 0. For t b(γ, t), one needs to
compute both partial derivatives, and check that they cannot be both zero.

When this is done, it is obvious that the maximal value of c(γ, t) can be
attained only at a point (γ, t) where a(γ, t) = b(γ, t).

If one writes down the equation a(γ, t) = b(γ, t), one finds a relation which
gives t as a function of γ. More precisely, one finds:

(22) (1 − γ) log(t/2) = e(γ),

where:

(23) e(γ) = 1 − γ + γ log(4 γ2) − (1 + γ) log(1 + γ).

Hence:

(24) t = 2 · exp(e(γ)/(1 − γ)).
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Plugging this value of t inside the definition of c(γ, t) gives a function:

(25) C(γ) = c(γ, t) = c
(
γ, 2 · exp

(
2 exp

(
e(γ)/(1 − γ)

)))
.

The last step is to compute the maximum of C(γ) and show that it is
approximately 1.89830200 . . . . I do not have an actual proof for that. What
I did was first to program C(γ) on my SHARP pocket calculator, and made
a table of values, for which the approximate value 1.898 . . . was pretty clear.
Then I used the MAPLE system on my portable computer to draw up graphs
of C and its derivative C ′ (and also C ′′, for good measure). The graph of
C ′ (and the values of C ′′ which seem to be everywhere < −1) gave me the
optimal value of γ as being around∗ 0.27598, with a corresponding t close
to 2.2492 . . . and C close to 1.898302009 . . . . I could easily get more precise
estimates∗ by using the PARI program, but there is not much point in doing
so. A more serious problem would be to transform this last part into an actual
proof. You must know what kind of methods are best suited for such things.
The trouble with C(γ) is that, although it is an ‘elementary’ function, it is
rather complicated to write down, and its derivative is even worse! I have
tried changing variables for γ by putting γ = sin ϕ, which allows one to write
1 + γ and 1 − γ in a nice trigonometric form, but that does not seem to
simplify the computations much.
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MAHLER’S MEASURE: FROM NUMBER THEORY TO

GEOMETRY

MARIE JOSÉ BERTIN

Abstract. We survey the latest developments concerning explicit loga-

rithmic Mahler measures for polynomials defining rational curves, elliptic

curves or K3 hypersurfaces.

1. Introduction

The first person interested in Mahler’s measure was D.H. Lehmer. In his
famous paper [20] he asked the following question (still unsolved): does there
exist a monic irreducible polynomial P, not cyclotomic, with integer coeffi-
cients, such that

Ω(P ) :=
∏

P (α)=0

max
(

|α|, 1
)

< Ω(P0) ' 1.17628 ?

Here P0 is the Lehmer polynomial

x
10 + x

9 − x
7 − x

6 − x
5 − x

4 − x
3 + x + 1.

In fact

Ω(P ) = M(P ),

where M(P ) denotes the measure of the polynomial P introduced by Mahler
in 1962. The logarithmic Mahler measure of a multivariate polynomial P is
defined by

m(P ) :=
1

(2πi)n

∫

Tn

log
∣

∣P (x1, · · · , xn)
∣

∣

dx1

x1

· · · dxn

xn

and the Mahler measure by

M(P ) = exp
(

m(P )
)

.

By Jensen’s formula, if P ∈ Z[X] is monic, then

M(P ) =
∏

P (α)=0

max
(

|α|, 1
)

.
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relations, Eisenstein-Kronecker Series, L-series of K3 hypersurfaces.
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The first partial answer to Lehmer’s question is due to Breusch (1951)[14]:

M(P ) ≥ 1.1796 . . .

if P is nonreciprocal and P (x) 6= ±x. In 1971 Smyth [27] independently
sharpened this, for the same P , to

M(P ) ≥ M(x3 − x − 1) ' 1.3247 . . . .

The obstruction to answering Lehmer’s question is therefore the reciprocal
polynomials, in particuliar Salem polynomials [5]. A reciprocal polynomial is
a palindromic polynomial and a Salem polynomial is an irreducible reciprocal
polynomial with a unique root outside the unit circle, hence a unique root
inside the unit circle and the other roots on the unit circle.

Boyd’s limit formula (1981) [8]

lim
N→+∞

m
(

P (x, x
N)
)

= m
(

P (x, y)
)

whenever the left hand term contains an infinity of different measures, was a
hope for getting small measures in one variable from small measures in two
variables. At that time, Boyd computed numerically

M
(

(x + 1)y2 + (x2 + x + 1)y + x(x + 1)
)

= 1.25542 . . . ,

M
(

y
2 + (x2 + x + 1)y + x

2
)

= 1.28573 . . . ,

and these are the smallest known measures in two variables. Notice that these
polynomials define elliptic curves. In the same year, Smyth obtained the first
explicit Mahler measures [8]:

m(x + y + 1) = L
′(χ−3,−1),

m(x + y + z + 1) =
7

2π2
ζ(3),

where χ−3 denotes the odd quadratic character of conductor 3 and

L
′(χ−3,−1) =

3
√

3

4π
L(χ−3, 2)

is derived from the functional equation of the Dirichlet L-series.
Then we must await Deninger’s guess of the formula [15] (1996)

m(x +
1

x
+ y +

1

y
+ 1)

?
=

15

4π2
L(E, 2) = L

′(E, 0),

where the Laurent polynomial defines an elliptic curve E of conductor 15 and
L(E, 2) its L-series at s = 2. The last equality comes from the functional
equation. (A question-mark over an equals sign means that the relation is
verified numerically up to fifty decimals.) Since then, there has been an
abundant literature in this area, three conferences on Mahler measure and
developments in many mathematics domains; see for example [10].

I want to focus on two questions:
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• There are experimental relations between the Mahler measure of dif-
ferent polynomials. Can we prove these relations? What do they
encode?

• How is the geometry of the curve or the surface involved in the explicit
expressions?

2. Curves of genus 0

Let me take an example. For the polynomial

P = y
2(x + 1)2 + 2y(x2 − 6x + 1) + (x + 1)2

,

Boyd guessed (1998) [9] that

m(P )
?

= 4L′(χ−4,−1) =
8

π
L(χ−4, 2),

where

L(χ−4, 2) = 1 − 1

32
+

1

52
+ · · · = G,

G being Catalan’s constant. Here P defines a cubic curve C with (1, 1) as
double point. Putting x = 1 + X and y = 1 + Y and completing the square,
we find

(

Y (X + 2)2 + 2X2
)

2

= −16X2(X + 1).

Hence we get the parametrisation of the two branches γ1 and γ2 of the curve
C:

x1 = −t
2
, y1 = −

(

1 + t

1 − t

)2

;

x2 = −t
2
, y2 = −

(

1 − t

1 + t

)2

.

But

m(P ) =
1

(2πi)2

∫

|x|=1

∫

|y|=1

log
∣

∣P (x, y)
∣

∣

dx

x

dy

y

=
1

2πi

∫

|x|=1

log
(

max
(

|y1|, |y2|
)

)

dx

x
(by Jensen’s formula)

=
1

2πi

∫

Γ

η2(2)(x, y),

with
η2(2)(x, y) = i log |y|d argx − i log |x|d arg y

being a differential form on the variety Γ (Maillot’s trick [22]), where

Γ =
{

(x, y) ∈ C2
/ (x, y) ∈ C , |x| = 1, |y| ≥ 1

}

.

Using this parametrisation,

2m(P ) = − 1

2πi

∫

γ1

η2(2)
(

x1(t), y1(t)
)

− 1

2πi

∫

γ2

η2(2)
(

x2(t), y2(t)
)

.
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Now η2(2) is related to the Bloch-Wigner dilogarithm D:

D(x) := =Li2(x) + log |x| arg(1 − x),

which is an univalued function, real analytic on P1(C) \ {0, 1,∞} and contin-
uous on P1(C). The dilogarithm Li2 is defined as

Li2(x) :=
∞
∑

n=1

x
n

n2
.

If we set
D̂(x) = iD(x) ,

then the relation is the following:

dD̂(x) = η2(2)(x, 1 − x).

The differential η2(2) satisfies

• multiplicativity in each variable,
• antisymmetry,
• if α 6= β then

η2(2)(t − α, t − β) = η2(2)

(

t − α

t − β
, 1 − t − α

t − β

)

+ η2(2)(t − α, α − β) + η2(2)(β − α, t − β).

Thus the Mahler measure can be expressed as

2m(P ) = − 1

2πi

∫

γ1

4dD̂(−t) − 4dD̂(t) − 1

2πi

∫

γ2

−4dD̂(−t) + 4dD̂(t)

=
2

π

[

D(t) − D(−t)
]i

−i
+

2

π

[

D(−t) − D(t)
]−i

i

=
16

π
D(i)

= 8d4.

Thus Boyd’s guess is proved. So, for some genus 0 curves, the Mahler measure
encodes the Bloch-Wigner dilogarithm, and hence the Bloch groups.

2.1. The Bloch groups. Let F be a field. Let us define the group of rela-
tions

R2(F ) ⊂ Z[P1

F ],

R2(F ) := [x] + [y] + [1 − xy] +

[

1 − x

1 − xy

]

+

[

1 − y

1 − xy

]

.

The second Bloch group is the quotient group

B2(F ) := Z[P1

F ]/R2(F ).

There is a homomorphism δ
2

1
:

B2(F )
δ2

1→ Λ2
F

∗
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defined by
δ
2

1
([x]2) = x ∧ (1 − x).

The class of x in B2(F ), [x]2, behaves like a Bloch-Wigner dilogarithm.
The cohomology of the complex

BF (2) ⊗ Q : B2(F )Q

δ2

1→ (Λ2
F

∗)Q

is related to K-theory by Matsumoto’s theorem

H
2
(

BF (2)
)

' K2(F ).

Lalin [18] has proved that Smyth’s first result can be treated in that context.
Vandervelde [31] has given a class of polynomials defining rational curves to
which this applies. For this class of polynomials, the Mahler measure can be
expressed in terms of dilogarithms of algebraic numbers up to possibly a term
in ζF (2). One of the conditions for such polynomials is to be tempered.

Definition 1. A polynomial in two variables is tempered if the polynomials

corresponding to the faces of its Newton polygon have roots of unity as their

only zeros.

When drawing the convex hull of points (i, j) in Z2 corresponding to the
monomials ai,jx

i
y

j, ai,j 6= 0, you also draw points of Z2 located on the faces.
The polynomial of the face is a polynomial in one variable t which is a com-
bination of the monomials 1, t, t

2, . . . . The coefficients of the combination
are given when going along the face, that is ai,j if the lattice point of the face
belongs to the convex hull and 0 otherwise. For example, the polynomial

y
2 + y + x

2 + x + 1

is tempered, since its Newton polygon corresponds to

1
1 0
1 1 1

and the polynomials of the faces are

1 + t
2
, 1 + t + t

2
, 1 + t + t

2
.

The polynomial

P := (x2 + x − 1)y2 + (x2 + 5x + 1)y − x
2 + x + 1

is not tempered, since its Newton polygon corresponds to

−1 1 1
1 5 1
1 1 −1

and the polynomials of the faces are all equal to ±(t2 + t− 1). However, even
in that case, the Mahler measure may have an expression of the same shape.
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Indeed, Boyd guessed for m(P ) the formula [9]

A := m(P )
?

=
2

3
log φ +

1

6
d15;

d15 = L
′(χ−15,−1),

where χ−15 is the odd primitive character of conductor 15.
Bloch’s formula [9] gives L

′(χ−f ,−1) for odd primitive χf as a combination
of Bloch-Wigner dilogarithms,

L
′(χ−f ,−1) =

f

4π

f
∑

m=1

χ−f (m)D(ζm
f ),

where ζf denotes an f -th root of unity. Applying this formula, we find

1

6
L
′(χ−15,−1) =

5

4π

[

D(ζ15) + D(ζ2

15
) + D(ζ4

15
) + D(ζ8

15
)
]

.

Now, using a parametrisation of the two branches of the curve

x = j ± t√
5
,

y =

(

±
√

5 − 1

2

)(

2t ∓ 2
√

5 − 5 ± i
√

15

2t + 5 ± i
√

15

)

,

we get

A =
2

3
log

(

1 +
√

5

2

)

− D

(

−j
2
1 −

√
5

2

)

− D

(

j
1 −

√
5

2

)

− D

(

−j
1 +

√
5

2

)

− D

(

j
2
1 +

√
5

2

)

.

Numerically, correct to fifty decimal places, we check that

C := −D

(

−j
2
1 −

√
5

2

)

− D

(

j
1 −

√
5

2

)

− D

(

−j
1 +

√
5

2

)

− D

(

j
2
1 +

√
5

2

)

?

= E :=
5

4

[

D(ζ15) + D(ζ2

15
) + D(ζ4

15
) + D(ζ8

15
)
]

,

where ζ15 is a 15-th root of unity; hence the formula guessed by Boyd.
So, even if the polynomial is not tempered, there is an underlying relation

between dilogarithms. Hence the objects are living in a Bloch group.
By Galois descent in the Bloch group, C and E live in B2

(

Q(
√
−15)

)

Q
.

I have not yet guessed to which element in B2

(

Q(
√
−15)

)

Q
the numbers C

and E correspond.
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3. Curves of genus 1

Let us consider the polynomials

P = (x + 1)(y + 1)(x + y + 1) + xy

and

Q = y
′2 + (x′2 + 2x′ − 1)y′ + x

′3
.

Boyd [9] suspected and I proved [2] in 2004 the following relation between
the Mahler measure of the two polynomials.

Theorem 1. [2] We have

7m(Q) = 5m(P ).

What does this mean? If P defines a ‘good’ curve of genus 1, that is, if P

is tempered, such an equality encodes the K-theory of an elliptic curve.

3.1. The elliptic regulator. Let F be a field. By Matsumoto’s theorem,
the second group of K-theory K2(F ) can be described in terms of symbols
{f, g}, for f and g ∈ F

∗ and relations between them.
The relations are

• {f1f2, g} = {f1, g} + {f2, g},
• {f, g1g2} = {f, g1} + {f, g2},
• {1 − f, f} = 0.

For example, if v is a discrete valuation on F with maximal ideal M and
residual field k, the Tate tame symbol

(x, y)v ≡ (−1)v(x)v(y)
x

v(y)

yv(x)
(mod M)

defines a homomorphism

λv : K2(F ) → k
∗
.

Let E be an elliptic curve on Q and Q(E) its rational function field. To any
P ∈ E(Q) is associated a valuation on Q(E) that gives the homomorphism

λP : K2

(

Q(E)
)

→ Q(P )∗

and the exact sequence

0 → K2(E) ⊗ Q → K2

(

Q(E)
)

⊗ Q
λ−→

⊔

P∈E(Q̄)

Q(P )∗ ⊗ Q → · · · .

By definition K2(E) is defined modulo torsion by

K2(E) ' ker λ = ∩P ker λP ⊂ K2

(

Q(E)
)

.

By a theorem due to Rodriguez Villegas [25], if a tempered polynomial,
P ∈ Q[x±

, y
±] defines a smooth curve C, we obtain

{x, y}N ∈ K2(C).
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In particuliar, if

P (x, y) = (x + y + 1)(x + 1)(y + 1) + xy,

then

{x, y} ∈ K2(E).

Let f and g be in Q(E)∗. Define

η(f, g) = log |f |darg g − log |g|d arg f.

Definition 2. The elliptic regulator r of E is given by

r : K2(E) → R

{f, g} 7→ 1

2π

∫

γ
η(f, g)

for a suitable loop γ generating the subgroup H1(E, Z)− ⊂ H1(E, Z), where

the complex conjugation acts by −1.

3.2. The elliptic dilogarithm D
E(P ). There are two representations of the

complex structure of an elliptic curve E: the first as a lattice and the second
as a Tate curve.

E(C) ' C/(Z + τZ) → C∗
/q

Z

(

P(u),P ′(u)
)

7→ u(modΛ) 7→ e
2πiu = z.

Now define

D
E(P ) =

+∞
∑

n=−∞

D(qn
z)

for P ∈ E(C) and D the Bloch-Wigner dilogarithm. The elliptic dilogarithm
D

E can be extended to divisors on E(C) and is also related to the elliptic
regulator r.

3.3. Sketch of the proof of the theorem. The equality P = 0 defines two
roots y1 and y2 which are functions of x. Denote by y1 the root satisfying
|y1(x)| < 1 if |x| = 1. By Jensen’s formula, we get

m(P ) = − 1

2πi

∫

|x|=1

log |y1|
dx

x

=
1

2π

∫

σ

η(x, y).

But σ is a path on the variety
{

(x, y) ∈ E, |x| = 1, |y| ≥ 1
}

and σ

generates H1(E, Z)−, so

m(P ) = ±r({x, y}).
For the same reasons,

m(Q) = ±r({x′
, y

′}).
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Comparing these regulators with the regulator of the isomorphic elliptic curve
X1(11):

Y
2 + Y − X

3 + X
2 = 0,

one gets

7r({X, Y }) + r({x, y}) = 0,

−5r({X, Y }) + r({x′
, y

′}) = 0,

that is

5m(P ) = 7m(Q).

We obtain even more: the proof of an exotic relation suspected by Bloch and
Grayson [6].

If D denotes the Bloch-Wigner dilogarithm, Milnor considers D(ζ) for
ζ

d = 1 and conjectures, for geometric reasons, that the only relations

d−1
∑

r=1

arD(ζr) = 0, ar ∈ Z

are those arising from the distribution relations

D(xs) = s

∑

τs=1

D(τx)

together with

D(x̄) = −D(x).

The corresponding situation for the elliptic dilogarithm is not quite the same.
Let E be an elliptic curve over Q and suppose that the torsion group

E(Q)tors is cyclic and put d = #E(Q)tors. Write Σ for the number of fibers
of type In with n ≥ 3 in the Néron model [23] and suppose [ d−1

2
] − Σ > 1.

Then there should be at least [ d−1

2
] − Σ − 1 relations

d−1
∑

r=1

arD
E(ζr) = 0, ar ∈ Z

where ζ is a primitive d-th root of unity and

D
E(ζr) =

+∞
∑

−∞

D(qn
ζ

r).

Definition 3. The previous relations are called exotic.

If E denotes the modular elliptic curve X1(11), the earlier proof yields the
exotic relation

3DE(P ) = 2DE(2P ),

if P = (0, 0) is a 5-torsion point of X1(11).
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4. Surfaces

Consider the family of Laurent polynomials

Qk = x +
1

x
+ y +

1

y
+ z +

1

z

+ xy +
1

xy
+ zy +

1

zy
+ xyz +

1

xyz
− k,

and the relation guessed by Boyd [11]

2m(Q−36)
?

= 4m(Q−6) + m(Q0).

What does this relation mean?

Computations up to high accuracy are possible thanks to the following
result.

Theorem 2 ((2005)[3]). Let k = −(t + 1/t) − 2 and

t =
η(3τ)4

η(12τ)8
η(2τ)12

η(τ)4η(4τ)8η(6τ)12
,

where η is the Dedekind eta function and q = e
2πiτ . Then the Mahler measure

of the polynomial Qk can be expressed in terms of the following Eisenstein-

Kronecker series:

m(Qk) =
=τ

8π3

∑

(m,κ) 6=(0,0)

2

(

2< 1

(mτ + κ)3(mτ̄ + κ)
+

1

(mτ + κ)2(mτ̄ + κ)2

)

− 32

(

2< 1

(2mτ + κ)3(2mτ̄ + κ)
+

1

(2mτ + κ)2(2mτ̄ + κ)2

)

− 18

(

2< 1

(3mτ + κ)3(3mτ̄ + κ)
+

1

(3mτ + κ)2(3mτ̄ + κ)2

)

+ 288

(

2< 1

(6mτ + κ)3(6mτ̄ + κ)
+

1

(6mτ + κ)2(6mτ̄ + κ)2

)

.

4.1. Key points in the proof of the previous result.

• More geometry is necessary since the polynomials Qk define K3-
surfaces Xk.

• Since Xk is a K3-surface, there is on Xk a unique (up to scalars)
holomorphic 2-form.

• Since Xk is a K3-surface, one can define periods.
• The family of periods satisfies a Picard-Fuchs differential equation of

order 3 [32].
• The derivative of the Mahler measure of the polynomial Qk with re-

spect to the parameter k, dm(Pk)

dk
, is a period of Xk, hence satisfies the

Picard-Fuchs equation.
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• The family Xk is modular, so the solutions of the Picard-Fuchs equa-
tion can be expressed in terms of modular forms.

• By integrating and taking the development in Fourier series, we find
the previous formulae.

For Xk singular, m(Pk) is related to the L-series of the variety Xk [4]. In
fact, one of the most important result on K3-surfaces is a theorem of Mor-
rison: a K3-surface X, M-polarized, with Picard number 19, has a Shioda-
Inose structure, that is to say

X A = E × E/CN

Y = Kum(A/±)

@
@

�
�

ι

where E is an elliptic curve, CN is a cyclic group of isogeny, ι an involution
and X/〈ι〉 is birationally isomorphic to Y . Moreover, if X is singular (Picard
number 20), then E has complex multiplication.

So we get the following theorem.

Theorem 3. (2005)[3] Let Q(
√
−3) and R = (1, 2

√
−3) ⊂ R

′ = (1,
√
−3)

two orders of discriminants −48 (resp. −12), with class numbers 2 (resp. 1).
Let ΦR (resp. ΦR′), the Hecke Grössencharacter of weight 3, be defined by

ΦR(αR) = α
2
, ΦR(P ) = −3, P = (3, 2

√
−3),

ΦR′(βR
′) = β

2
.

Then, the relation

2m(Q−36) = 4m(Q−6) + m(Q0)

is equivalent to the relation

9

8

∑

(m,κ) 6=(0,0)

m
2 − 3κ2

(m2 + 3κ2)3
=

∑

(m,κ) 6=(0,0)

(

4m2 − 3κ2

(4m2 + 3κ2)3
− 12m2 − κ

2

(12m2 + κ2)3

)

,

which in turn can be expressed as a relation between Hecke L-series

LR′(φR′, 3) = LR(φR, 3).

Zagier [33] has proved that this is in fact a relation between the L-series of
weight 3 modular forms for Γ0(4):

(1 + 2 · 41−s)L(f, s) = L(f1, s) + L(f2, s),
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where f = [θ1, θ3], f1 = [θ1, θ12] and f2 = [θ4, θ3] are Rankin-Cohen brackets.
In our situation, if

θa =
∑

n∈Z

q
an2

,

the Rankin-Cohen bracket is

RC(g, h) = [g, h] = kgh
′ − lg

′
h

and is a modular form of weight k + l + 2 provided that g is of weight k and
h of weight l.

5. Final remarks

Using the Zagier-Goncharov trilogarithm, Lalin [17] has generalized the
wedge product to 3 variables, explaining for instance Smyth’s second relation
and many other relations such as

m
(

(1 + x + y
−1) − (1 + x + y)z

)

= 14

3π2 ζ(3) (Smyth) [28], [29],

m
(

(1 + x)(1 + y) − (1 − x)(1 − y)z)
)

= 7

3π2 ζ(3) (Lalin) [18].

For all these examples, the surfaces are rational of a certain type. So my
last question is: what are the explicit formulae for rational elliptic surfaces,
for instance the rational elliptic modular surface associated to Γ0(6) defined
by

x(x − 1)(y − 1) = zy(x − y)?

Acknowledgement. I thank the referee for his pertinent suggestions con-
cerning the presentation of this article.

References

[1] A. Beilinson, Higher regulators of modular curves, Application of algebraic K-theory

to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp.
Math.,55, Amer. Math. Soc., Providence, R. I., (1986), 1–34.

[2] M.J. Bertin, Mesure de Mahler d’une famille de polynômes, J. reine angew. Math.
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EXPLICIT CALCULATION OF ELLIPTIC FIBRATIONS OF

K3-SURFACES AND THEIR BELYI-MAPS

FRITS BEUKERS AND HANS MONTANUS

Abstract. In this paper we give an introduction to Belyi-maps and

Grothendieck’s dessins d’enfant. In addition we provide an explicit method

to compute the Belyi-maps corresponding to all semi-stable families of el-

liptic curves with six singular fibers.

1. Introduction

In a paper by Miranda and Persson [5], the authors study semi-stable
elliptic fibrations over P1 of K3-surfaces with 6 singular fibres. In their paper
the authors give a list of possible fiber types for such fibrations. It turns out
that there are 112 cases. The corresponding J-invariant is a so-called Belyi-
function. More particularly, J is a rational function of degree 24, it ramifies
of order 3 in every point above 0, it ramifies of order 2 in every point above 1,
and the only other ramification occurs above infinity. To every such map we
can associate a so-called ‘dessin d’enfant’ (a name coined by Grothendieck)
which in its turn uniquely determines the Belyi map. If f : C → P1 is a Belyi
map, the dessin is the inverse image under f of the real segment [0,1].

Several papers, e.g. [3],[7],[13], have been devoted to the calculation of some
of the rational J-invariants for the Miranda-Persson list. It turns out that
explicit calculations quickly become too cumbersome (even for a computer) if
one is not careful enough. The goal of this paper is to compute all J-invariants
corresponding to the Miranda-Persson list. We use a trick which enables us to
reduce the calculation to the solution of a set of three polynomial equations
in three unknowns (see Section 7 for details). The results can be found on
the website

http://www.math.uu.nl/people/beukers/mirandapersson/Dessins.html

On that website, an entry like 14-3-2-2-2-1 means that one finds there
all dessins of J-functions with ramification orders 14,3,2,2,2,1 above infinity.
Alternatively one can say that the special elliptic fibers are of type In with
n = 14, 3, 2, 2, 2, 1. If to a partition there corresponds only one picture, this
means that J is a rational function with coefficients in Q. If there are several
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pictures, the corresponding fields of definition are indicated. On this website
one also finds the explicit J-invariants.

Besides giving the computation of explicit formulas for the Miranda-Persson
list this paper also contains a brief introduction to Belyi maps and dessins
d’enfant.

Acknowledgement. I would like to thank one of the referees in particular
for valuable advice concerning the presentation of the tables and the compu-
tational results. Thanks are also due to Jeroen Sijsling who compiled Table
1 in the Appendix.

2. Dessins d’enfant

Let X be a smooth algebraic curve and φ : X → P1 a non-constant rational
function, which can be considered as a morphism of curves. A point P ∈ X

is called a point of ramification if dφ(P ) = 0. The image under φ of the
ramification points is called the branched set. Let S be a finite subset of P1.
We say that φ is unramified outside S if the branched set is contained in S.
We have the following theorem.

Theorem 2.1. Let X be a smooth algebraic curve defined over C and φ :
X → P1 a non-constant rational map. Suppose the branched set of φ is

contained in P1(Q). Then both X and φ can be defined over Q.

Although the theorem is quite well known, its proof is not easy to recover
from the literature. In Serre’s book [10, p. 71] on the Mordell-Weil theorem
we are referred to SGA1 (Séminaire de Géometrie Algébrique, LNM 224).

The following remarkable theorem is crucial to the story of dessins d’enfant.

Theorem 2.2 (Belyi). Let X be an algebraic curve defined over Q. Then

there exists a non-constant rational map φ : X → P1 which is unramified

outside {0, 1,∞}.
See [1] for a proof. Together with the previous theorem, this theorem

characterises algebraic curves defined over Q as algebraic curves that allow a
rational map to P1 unramified outside {0, 1,∞}. In other words, we have a
geometric characterisation for curves defined over Q.

A pair (X, φ), where X is a smooth algebraic curve and φ : X → P1 a
non-constant morphsim unramified outside {0, 1,∞}, is called a Belyi pair.
Two Belyi pairs (X, φ) and (X ′

, φ
′) are considered equivalent if there is an

isomorphism σ : X → X
′ such that φ = φ

′ ◦ σ. From now on, when we speak
of Belyi pairs, we mean their equivalence class.

The other surprise, due to an observation of Grothendieck, is that the
geometrical criterion can be turned into a purely combinatorial description
using certain graphs. To this end we shall use connected, bi-coloured, graphs
with rotation.

(1) A graph is called connected if every vertex is connected to any other
vertex via a sequence of edges.
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(2) A graph is called bi-coloured if every vertex is given one of two colours
(say black and white) such that vertices of the same colour are not
connected by an edge.

(3) A graph is called a graph with rotation if at every vertex there is a given
cyclic ordering of the edges ending in the vertex (in mathematical
physics literature they are referred to as ribbon graphs).

A graph satisfying all three of properties above is called a dessin d’enfant, or
simply a dessin. These names were first coined by Grothendieck, see [6]. Two
dessins are considered equivalent if there exists a graph isomorphism between
them preserving the bi-colouring and the cyclic ordering at the vertices. From
now on, when we speak of a dessin, we mean its equivalence class.

Before explaining the connection between Belyi pairs and dessins, we in-
troduce two other categories of interest. An ordered triple of permutations
σ0, σ1, σ∞ ∈ Sn, the group of permutations on {1, 2, . . . , n}, is called a permu-

tation triple if σ0σ1σ∞ = Id and the group generated by σ0, σ1 acts transitively
on {1, 2, . . . , n}. Two permutation triples σi (i = 0, 1,∞) and σ′

i (i = 0, 1,∞)
are considered equivalent if there exists τ ∈ Sn such that σ′

i = τσiτ
−1 for

i = 0, 1,∞. From now on, when we speak of a permutation triple, we mean
its equivalence class.

Finally we consider finite extensions of Q(z) unramified outside 0, 1,∞.
Two such extensions K,K ′ are considered equivalent if there exists a field
isomorphism ψ : K → K

′ fixing the subfield Q(z). Again, we consider equiv-
alence classes of such extensions.

Above we have defined four categories,

I Belyi pairs (X, φ).
II Dessins (d’enfant).

III Permutation triples.
IV Finite extensions of Q(z), unramified outside of 0, 1,∞.

We would like to make these classes more refined by introducing the order
n.

I(n) Belyi pairs (X, φ) where deg(φ) = n.
II(n) Dessins (d’enfant) with n edges.

III(n) Permutation triples in Sn.
IV(n) Finite extensions of Q(z) of degree n, unramified outside 0, 1,∞.

We now give an explicit set of natural bijections

I(n) → IV(n) → III(n) → II(n) → I(n)

whose composition is the identity map I(n) → I(n). The reader should verify
that in each case the mapping is actually well defined on equivalence classes.

I(n) → IV(n). To a Belyi pair (X, φ) we associate the function field Q(X)
as an extension of Q(φ).
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IV(n) → III(n). Let K be the degree n extension of Q(z). Choose y ∈ K

such that K = Q(z, y). Let P (z, y) be the minimal polynomial of y over Q(z).
For the following consideration we need to consider an embedding Q ↪→ C

and then work over C with a monodromy argument.
Choose a point z0 6= 0, 1,∞ and such that P (z0, y) is well defined and has n

distinct zeros. Consider the n Taylor series solutions y1, y2, . . . , yn of P (z, y) =
0 around z0. Choose a closed path γ0 ∈ π1(C\{0, 1}, z0), which loops around
0 exactly once in the positive direction, and zero times around 1. Analytic
continuation of the functions y1, . . . , yn permutes these functions. Denote
this permutation by σ0. Similarly we choose a loop γ1 going around 1 exactly
once in the positive direction. Analytic continuation along γ1 generates a
permutation σ1. Together, the permutations σ0, σ1, σ∞ = (σ0σ1)

−1 form a
permutation triple. Transitivity of the group generated by σ0, σ1 follows from
the irreducibility of P (y).

III(n) → II(n). Let σi ∈ Sn (i = 0, 1,∞) be a permutation triple. Take n
line segments each with a black and a white endpoint. We now identify the
black points and the white points in the following manner to obtain a dessin.
We number the segments 1, 2, . . . , n. For each cycle in the cycle decomposition
of σ0 we identify the black points corresponding to the numbers in that cycle
and choose the ordering of the cycle as ordering on the edges ending in the
newly formed black vertex. We proceed in the same way with the white
vertices using the cycle decomposition of σ1. Because the group generated by
σ0, σ1 acts transitively on 1, 2, . . . , n, the resulting graph is connected.

II(n) → I(n). Let D be a dessin. The argument used here is a topological
one. Choose a closed compact oriented surface which allows an embedding
D → S such that:

(1) the vertex orientation of D coincides with the positive orientation on
S;

(2) S \ D is a finite union of simply connected open sets U1, U2, . . . , Ur

with piecewise smooth boundaries.

These properties determine the genus g of S uniquely. We now complete the
embedded dessin into a triangulation of S. Choose in every open set Ui a grey
point and connect it by edges to all vertices on D which are on the boundary
of Ui. This gives a triangulation of S. There are two kinds of triangles:
positive ones, in which the ordering of the vertices is black-white-grey, and
negative ones, in which the ordering of the vertices is black-grey-white. Both
types occur equally often. Now construct a continous map φ : S → P1 such
that:

(1) the positive triangles are mapped homeomorphically onto the north-
ern hemisphere (Im(z) ≥ 0) with the black, white and grey vertices
mapping to 0, 1,∞;
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(2) the negative triangles are mapped homeomorphically onto the south-
ern hemisphere (Im(z) ≤ 0) with the black, white and grey vertices
mapping to 0, 1,∞.

Now pull back the complex structure of P1 to a complex structure on S via
φ. In this way S becomes a compact Riemann surface, hence an algebraic
curve.

Of course, any other mapping between these sets is a composition of one
or more of the above ones. There are a few useful shortcuts though.

I(n) → II(n). Given a Belyi pair (X, φ) the corresponding dessin is sim-
ply φ

−1
(

[0, 1]
)

where the two sets of vertices are φ
−1(0) and φ

−1(1). The
orientation around the vertices is induced by the positive orientation on X.

II(n) → III(n). Let n be the number of edges of the dessin. We number
these edges 1, 2, . . . , n. For σ0 we take the permutation induced by the cyclic
ordering around the black vertices; for σ1 we take the permutation induced
by the ordering around the white vertices. Because the dessin is connected,
the subgroup of Sn generated by σ0, σ1 acts transitively on 1, 2, . . . , n.

In each of the sets I, II, III, IV there are natural subsets which are also in
1-1 correspondence. They are

I′ Connected graphs with n edges and a cyclic order at each vertex.
These graphs arise if we take a dessin in which every white vertex has
multiplicity 2 (i.e., there are two edges emanating from it) and where
the white vertices are subsequently erased.

II′ Belyi pairs (X, φ) with deg(φ) = 2n, such that every point in φ
−1(1)

is ramified of order two.
III′ Permutation triples in S2n such that σ1 is a product of n disjoint cycle

pairs.
IV′ Finite extensions of Q(z) of degree 2n, unramified outside 0, 1,∞ and

ramification order 2 in every place above 1.

Following Schnepps [6, p. 50] we call I′ the set of clean dessins. We can
always recover the original dessin from the clean one by putting a white vertex
in the middle of each edge. Although it seems like a restriction, any dessin
can be mapped to a clean dessin as follows. Let φ : X → P1 be the Belyi
map corresponding to the general dessin. Then the map X → P1 given by
P 7→ 4φ(P )

(

1−φ(P )
)

is again a Belyi map which now corresponds to a clean
dessin. This is based on the idea that x 7→ 4x(1 − x) maps ∞ to ∞, the
points 0, 1 to 0 and it ramifies of order 2 above 1. The clean dessin is simply
obtained from the original dessin by changing the colour of the white points
to black.

Theorem 2.3. Let φ : X → P1 be a Belyi map of degree N . Let n0, n1, n∞

be the number of distinct points in φ
−1(0), φ−1(1), φ−1(∞) respectively. Then

2g(X) − 2 = N − n0 − n1 − n∞,
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where g(X) denotes the genus of X.

Proof. We prove this theorem using the description of the Belyi map via
dessins. The pre-image φ−1

(

[0, 1]
)

⊂ X defines a cell decomposition of X.
The number of 0-cells is n0 + n1, the number of 2-cells is n∞ and the num-
ber of 1-cells N . The theorem follows from the computation of the Euler
characteristic of X,

2 − 2g(X) = n0 + n1 −N + n∞.

�

3. Counting dessins

We address the following question. Given the ramification indices above
0, 1,∞, how many corresponding dessins are there?

Before we answer the question we need a slight extension of the concept of
permutation triples and dessins. By a generalised permutation triple we mean
any three g0, g1, g∞ ∈ Sn such that g0g1g∞ = Id. So we have dropped the
transitivity condition. In the same way as before we shall consider equivalence
classes of permutation triples. A generalised dessin is simply a bicoloured
oriented graph, without the condition of connectivity. Again we consider
only equivalence classes of generalised dessins.

Furthermore, we call g ∈ Sn an automorphism of the triple gi (i = 0, 1,∞)
if ggig

−1 = gi for i = 0, 1,∞. We denote the automorphism group by
Aut(g0, g1, g∞). An automorphism of a generalised dessin is of course an
automorphism as of a bicoloured oriented graph. We observe the following.

Remark 3.1. The natural bijection between II(n) and III(n) extends to a nat-

ural bijection between generalised dessins and generalised permutation triples.

Moreover, the automorphism group of a generalised dessin and the automor-

phism group of the corresponding generalised permutation triple are isomor-

phic.

One can also extend the classes I(n) and IV(n) and their correspondence
with generalised dessins. The class I(n) must be extended to sets of Belyi-
pairs where the sum of the degrees of the maps is n. The class IV(n) would
have to be extended to commutative Q(z)-algebras of dimension n. But we
shall not pursue this here.

The answer to our question is based on the following theorem (see also
[11]).

Theorem 3.2. Let n ∈ N. Let C0, C1, C∞ be three conjugacy classes in Sn.

The number of triples g0 ∈ C0, g1 ∈ C1, g∞ ∈ C∞ such that g0g1g∞ = Id is

given by

N(C0, C1, C∞) =
|C0||C1||C∞|

n!

∑

χ

χ(C0)χ(C1)χ(C∞)

dim(χ)
,
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where the sum is over all irreducible characters of Sn and dim(χ) denotes the

dimension of the representation corresponding to χ.

Notice that for any solution g0, g1, g∞ of the problem, the conjugates ggig
−1

(i = 0, 1,∞) are also solutions. So we arrive at the observation that the
quantity N(C0, C1, C∞)/n! counts the number of equivalence classes of gi ∈ Ci

(i = 0, 1,∞) with g0g1g∞ = Id with a weight equal to 1/
∣

∣Aut(g0, g1, g∞)
∣

∣.
Notice that the conjugacy classes of Sn are in 1-1 correspondence with par-

titions of n, hence with sets of ramification indices that add up to n. So
suppose we are given n, three partitions p0, p1, p∞ of n corresponding to ram-
ification indices above 0, 1,∞, and C0, C1, C∞ their corresponding conjugacy
classes. Then N(C0, C1, C∞)/n! counts the number of generalised dessins
with the given ramification data, where each dessin D is counted with weight
1/

∣

∣Aut(D)
∣

∣.

4. An example: planar dessins

As first examples we consider Belyi pairs (P1
, φ), so we take X = P1. A

Belyi map P1 → P1 is called a rational Belyi map. The automorphism group
of P1 is given by the fractional linear transforms z → az+b

cz+d
where ad− bc 6= 0.

So it is clear that if φ(z) is a rational Belyi map, then any equivalent one is
given by φ

(

az+b
cz+d

)

with ad− bc 6= 0.

Consider a dessin in P1 corresponding to a rational Belyi map and suppose
it does not contain ∞. After stereographic projection this dessin becomes
a dessin in the complex plane, i.e., a two-coloured planar graph. The cyclic
order of the edges around every vertex is induced by the positive orientation
in the plane.

Now let φ : P1 → P1 be a Belyi map, which we write as φ(x) = A(x)

B(x)
where

A(x), B(x) are polynomials with gcd equal to 1. Define C(x) = A(x)−B(x).
Then φ

−1(0), φ−1(∞), φ−1(1) are the zeros of A(x), B(x), C(x) respectively.
Here ∞ is counted as a zero of A(x) if deg(A) < deg(B), deg(C), and similarly
for B,C. Let S be the set of distinct zeros of ABC (possibly including ∞) and
let N be the degree of φ. Then our genus formula implies that −2 = N −|S|,
and hence that

|S| = N + 2.

In fact, for any triple of polynomials A(x), B(x), C(x) with A(x) + B(x) +
C(x) = 0 and gcd(A,B,C) = 1 we know that |S| ≥ N + 2, where N =
max

(

deg(A), deg(B), deg(C)
)

. This inequality is known as Mason-Stothers
inequality or the ABC-theorem. So we see that Belyi maps provide us with
optimal cases of Mason’s inequality.

5. J-maps

In this paper we shall be interested in special Belyi-maps which we call
J-maps: these have ramification order 3 in every point above 0 and unique
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ramification order 2 above 1. Because of this the degree of a J-map is always
a multiple of 6, say 6m. The corresponding dessin d’enfant now has vertices
of multiplicity two in the points φ−1(1). We might as well suppress these
points and we are left with a graph with 3m edges and precisely 2m vertices,
each with multiplicity 3. In the group theoretic description the element σ0

now has cycle type 33 · · ·3 (2m threes) and σ1 has cycle type 22 · · ·2 (3m
twos).

Proposition 5.1. Equivalence classes of J-maps are in 1-1 correspondence

with torsion-free finite index subgroups Γ of PSL(2,Z). The degree of the

J-map equals the index [PSL(2,Z) : Γ].

The proof of this Proposition is fairly straightforward and can be found in
[12].

We remark that the subgroups in the above Proposition are in general not
congruence subgroups. In fact the majority is not. However the congruence
subgroups are of course of special interest. In recent work by Sebbar and
McKay [9], [4] a complete classification is given of all torsion-free subgroups
Γ that are congruence subgroups and such that H/Γ is a rational curve. For
even more extensive computations see [2] and the references therein.

Proposition 5.2. Let J : X → P1 be a J-map. Let nJ = #J−1(∞), g the

genus of X and 6m = degree(J). Then 2g − 2 = m− nJ .

Proof. This follows from Theorem 2.3 with n0 = 3m,n1 = 2m,N = 6m and
n∞ = nJ . �

6. Counting rational J-maps

A J-map is called rational if X = P1. In this section we count the number
of equivalence classes of rational J-maps of degree 24. One way to do this
would be to draw all possible dessins d’enfant. However, this is a bit risky
since it is easy to overlook possible graphs. That is why we shall do the
drawing in conjunction with the group theoretic count using Theorem 3.2.

For a J-map of degree 6m the cycle types are 33 · · ·3 above 0 (2m threes,
this is C0), 22 · · ·2 above 1 (3m twos, this is C1) and a partition of 6m above
∞ into m+ 2 parts (this is C∞). In the Appendix we have given the table of
values for NC0C1C∞

/(6m)! for these cycle types in the cases m = 4. We do not
include the details of this computation in this paper, since the calculation of
the character table of S24 has been rather cumbersome. Suffice it to say that
we used the software package Lie with some special tweaks to find the table.

To enumerate all rational J-maps with m = 4 we consider each case in
Table 1 from the Appendix in the following way. Suppose for example that
C∞ is given by the partition 14-6-1-1-1-1 of 24. In Table 1 we find the counting
number 25/12. Let us draw all dessins corresponding to these data, where we
do not draw the vertices above 1 and the vertices above 0 are recognizable by
the three-fold branchings in the picture.
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These are two mirror images (the orientations are induced by the orienta-
tion in the plane) and each has trivial automorphism group. So they con-
tribute 2 to our character formula. The remaining 1/12 are accounted for by
the following generalised dessin

The smaller dessin has opposite orientations at the vertices, so it is not a
planar dessin. It has an automorphism group of order 6. The larger dessin is
planar and has an automorphism group of order 2. So the total automorphism
group has order 12, which explains the missing 1/12 in our character formula.
Moreover, we are now certain that we have listed all possible dessins corre-
sponding to the partition 14-6-1-1-1-1. On the website we have only pictured
the connected dessins.

7. Computation of rational J-maps

In this section we describe a method to compute rational J-maps efficiently,
in the sense that it gives us answers in a reasonable time when m ≤ 4. We
have not explored the cases when m ≥ 5. Moreover, due to condition (2) later
on, we must require that the partition of 6m into m + 2 parts must contain
at least one part ≥ m. This is always true when m ≤ 5.

Proposition 7.1. Let φ be a rational J-map of degree 6m such that φ(∞) =
∞. Then there exist polynomials c4, c6 ∈ C[t] of degrees 2m, 3m respectively

and a polynomial ∆ of degree < 6m such that:

(1) gcd(c4, c6) = 1,
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(2) c3
4
− c

2

6
= ∆,

(3) ∆ has m+ 1 distinct zeros,

(4) φ = c
3

4
/∆.

Proof. Since φ is a rational function which ramifies of order 2 in every point
above 1 and order 3 in every point above 0, there exist polynomials c4, c6,∆
such that φ(t) = c

3

4
/∆ = 1 + c

2

6
/∆. Hence c3

4
− c

2

6
= ∆. Since φ has degree

6m, the degrees of c4, c6,∆ follow. From Proposition 5.2 it follows that ∆ has
precisely nJ − 1 distinct zeros (∞ is left out) which equals (m+2− 2g)− 1 =
m+ 1.

�

Proposition 7.2. Let the notation and assumptions be as in the previous

Proposition, and ∆′ be the derivative of ∆. Define δ = gcd(∆,∆′) and ∆ =
pδ,∆′ = qδ, where the leading coefficient of δ is chosen the same as that of

∆, i.e., p is monic. Then c4, c6,∆ can be normalised in such a way that

c6 = c4q − 3c′
4
p ,

c
2

4
= c6q − 2c′

6
p ,

δ = 3c′
4
c6 − 2c′

6
c4 .

Moreover, there exists a polynomial l of degree ≤ m−1 such that c4 = q
2 + lp.

Proof. The identity c3
4
− c

2

6
= pδ and its derivative 3c2

4
c
′
4
− 2c6c

′
6

= qδ can be
rewritten in vector notation as

c
2

4

(

c4

3c′
4

)

+ c6

(

−c6
−2c′

6

)

+ δ

(

−p
−q

)

= 0.

We consider this as a system of linear equations in the unknowns c2
4
, c6. The

coefficient determinant is 2c4c
′
6
− 3c6c

′
4
. Suppose it vanishes identically. This

implies (c2
6
/c

3

4
)′ = 0, hence c2

6
/c

3

4
is in C, which cannot happen since c4, c6 are

relatively prime, non-constant polynomials. We conclude that 2c4c
′
6
−3c6c

′
4
6=

0 and solving the equation gives us the existence of λ ∈ C(z)∗ such that

λ





c6

c
2

4

δ



 =





c4q − 3c′
4
p

c6q − 2c′
6
p

3c′
4
c6 − 2c4c

′
6



 .

Since gcd(c4, c6) = 1 we can infer that λ ∈ C[z]. We note that the degrees of
p, q are m + 1 and m respectively. So from the first equation it follows that

deg(λ) + 3m ≤ deg(c4) + deg(q) = 2m+m = 3m.

Hence deg(λ) ≤ 0 and so λ ∈ C∗. By making the substitution c4 7→ λ
−2
c4,

c6 7→ λ
−3
c6, δ 7→ λ

−6
δ we can see to it that the new λ equals 1.

Finally notice that p and c4 are relatively prime. Consider the first two
equations modulo p. We obtain c6 ≡ c4q (mod p) and c

2

4
≡ c6q (mod p).
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Elimination of c6 yields c2
4
≡ c4q

2 (mod p). Since c4 and p are relatively
prime this implies c4 ≡ q

2 (mod p) from which our last assertion follows.
�

Suppose we wish to compute the rational J-maps with cycle type n1, n2,
. . . , nm+1, nm+2 above ∞. In particular ni > 0 for all i and

∑

i ni = 6m.
We assume that J(∞) = ∞ and that ∞ has ramification order nm+2. The
polynomial ∆ in Proposition 7.2 has the form

∆ = ∆0

m+1
∏

i=1

(z − ai)
ni ,∆0 ∈ Q

∗
.

The polynomials p, q in Proposition then have the form

p =

m+1
∏

i=1

(z − ai), q = p

m+1
∑

i=1

ni

z − ai

. (1)

Proposition 7.3. Suppose we have polynomials p, q given as in (1). Suppose

there exist polynomials c4, c6 of degrees 2m, 3m in z such that

c6 = c4q − 3c′
4
p c

2

4
= c6q − 2c′

6
p.

Then c
3

4
− c

2

6
is proportional to

∏m+1

i=1
(z − ai)

ni. Moreover, if there exists a

polynomial l of degree ≤ m−1 such that c4 = q
2 + lp, then c4, c6 are relatively

prime.

Proof. From the two equations for c4, c6 it easily follows that

c
2

4
(c4q − 3c′

4
p) = c6(c6q − 2c′

6
p).

Hence
(c3

4
− c

2

6
)q = (c3

4
− c

2

6
)′p

and thus

(c3
4
− c

2

6
)′

(c3
4
− c2

6
)

=
q

p
=

m+1
∑

i=1

ni

z − ai

.

In other words, c3
4
− c

2

6
is a constant times

∏

i(z − ai)
ni.

Suppose c4 = q
2 + lp. Since p, q have no common zeros, the same holds

for c4 and p. Suppose c4, c6 have a common zero ρ. Then, from the first
equation it follows that ordρ(c6) = ordρ(c4) − 1. From the second it follows
that 2ordρ(c4) = ordρ(c6) − 1. This gives a contradiction. Hence c4 and c6

are relatively prime.
�

Given p(z), q(z) as above, we solve the system of equations

c6 = c4q − 3c′
4
p ,

c
2

4
= c6q − 2c′

6
p ,

c4 = q
2 + lp ,
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in polynomials c4, c6, l of degrees 2m, 3m,m−1. We can eliminate c4, c6 from
these equations to obtain the following single equation for l(z):

0 = p
(

pl
2 + q

2
l + 5p′ql − 6(p′)2

l + 2pq′l − 6pp′′l

+5pql′ − 18pp′l′ + 12q2
q
′ − 6p2

l
′′ − 12p′qq′ − 12p(q′)2 − 12pqq′′

)

Note that we can divide by p on both sides. Denote by Q the polynomial
on the right between parentheses. In principle Q has degree 3m − 1. We
now write l =

∑m−1

i=0
liz

i and determine the coefficients li recursively for
i = m− 1, m− 2, . . . by setting the coefficient of z3m−1

, z
3m−2

, . . . in Q equal
to zero.

Let us first compute the leading coefficient of Q. The leading coefficient
of p equals 1, the leading coefficient of q equals N :=

∑m+1

i=1
ni. Then it is

straightforward to compute the leading coefficient of Q. It reads

(lm−1 +N
2)(lm−1 + 12mN − 36m2).

Since lm−1 +N
2 is also the leading coefficient of c4, which we assumed to be

non-zero, we conclude that

lm−1 = 36m2 − 12mN.

Fix k < m− 1. The coefficient lk occurs in the expansion of Q as a polyno-
mial in z. However, closer examination reveals that lk does not occur in the
coefficients of zr in Q when r > 2m+ k. When r = 2m + k the coefficient lk
occurs linearly with coefficient

(N − 5m− k − 1)(N − 12m+ 6k + 6),

where we have used our evaluation of lm−1. Setting the coefficient of z2m+k in
Q equal to zero allows us to compute lk in terms of li with i > k and the ai, ni.
In particular we see by induction that lk is polynomial in the ai. Notice that
the calculation of lk is only possible if (N − 5m− k − 1)(N − 12m+ 6k + 6)
is non-zero. The procedure will work whenever N ≤ 5m. Add nm+2 on both
sides and use N + nm+2 = 6m to find that the latter condition is equivalent
to

nm+2 ≥ m. (2)

When we restrict to m ≤ 4, as we will do here, this does not give us problems.
Once we have have expressed the coefficients lk in terms of the zeros ai, we

can substitute this in the equation Q = 0. By construction, the coefficients
of zj will be zero for j = 2m, 2m+ 1, . . . , 3m− 1. The requirement that the
coefficients of zj for j = 0, 1, . . . , 2m − 1 should be zero provides us with a
set of polynomial equations for the unknown points a1, a2, . . . , am+1.
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8. A sample computation

As an illustration of the algorithm from the previous section we compute
the J-map corresponding to the case m = 4 and the partition 19-1-1-1-1-1
above ∞.

We assume n6 = 19 and take ∆ proportional to z5 +az4 +bz3 +cz2 +dz+e.
We do this rather than taking ∆ proportional to

∏

5

i=1
(z − ai). In the latter

case the numbers ai may turn out to be algebraic, which may complicate our
calculations. Furthermore, by shifting z over a constant we can see to it that
a = 0. So ∆ is taken proportional to z5 + bz

3 + cz
2 + dz + e.

We find easily that p = z
5+bz3+cz2+dz+e and q = 5z4+3bz2+2cz+d. We

now use Proposition 7.2 to get c4 = q
2+(l3z

3+l2z
2+l1z+l0)p where l3 = −576.

Substitute this in c6 = c4q−3c′
4
p and substitute that in (c2

4
−c6q)/p+2c′

6
= 0.

We get the equation

450l2z
10 + (l2

2
+ 527l1 − 64872b)z9 + · · · = 0.

Setting the coefficient of z10 equal to zero gives us l2 = 0. We are left with
the equation

(527l1 − 64872b)z9 + (592l0 − 43392c)z8 + · · · = 0.

Setting the coefficient of z9 equal to zero gives us l1 = 64872b/527. Notice
also that setting the coefficient of z8 equal to zero gives us l0 = 43392c/592.
We are left with an equation of the form

Q7z
7 +Q6z

6 + · · · +Q0 = 0,

where

Q7 = −25920d+ 6486480b2/961

Q6 = 12096e− 13384224bc/1147

Q5 = 855360bd/31 + 6486480c2/1369

+6486480b3/961
...

... .

Setting Q5, Q6, Q7 equal to zero gives us a set of polynomal equations in
b, c, d, e whose solution reads

b = 62t2, c = 148t3, d = 1001t4, e = 8852t5,

where t can be chosen arbitrarily. Surprisingly enough, all coefficients Qi

(i = 0, . . . , 7) vanish for this choice of b, c, d, e. Hence we have found a solution
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which, choosing t = 1, reads

c4 = 192(z8 + 84z6 + 176z5 + 2366z4 + 13536z3

+26884z2 + 218864z + 268777) ,

c6 = 193(z12 + 126z10 + 264z9 + 6195z8 + 31392z7

+163956z6 + 1260528z5 + 3531639z4

+19770400z3 + 62912622z2 + 94024776z + 291742453) ,

∆ = c
3

4
− c

2

6

= −23833196(z5 + 62z3 + 148z2 + 1001z + 8852) .

Always, when the computation is done, one can reduce the complexity of the
coefficients to a large extent by performing a variable substitution. In our
example we substitute z by 4z − 1 and obtain a new relation

c
3

4
− c

2

6
= −16(4z5 − 5z4 + 18z3 − 3z2 + 14z + 31),

where

c4 = 4(z8 − 2z7 + 7z6 − 6z5 + 11z4 + 4z3 + 12z + 1) ,

c6 = 4(2z12 − 6z11 + 24z10 − 38z9 + 78z8

−48z7 + 60z6 + 72z5 − 30z4 + 120z3 + 27z2 + 9z + 29) .

9. Appendix

In this section we list the values of N(C∞) := NC0C1C∞
/24! for S24, where

C0 has cycle type consisting of 8 three’s, C1 has cycle type consisting of 12
two’s and where C∞ consists of exactly six cycles. We list only those cases
for which N(C∞) 6= 0. The first column lists the partition, the second the
corresponding value of N(C∞). In the third column we find the number of
irreducible dessins. They are stated in the form mα or mα+ nβ, where m,n
indicate the length(s) of the Galois orbit(s) and α, β indicate the weights with
which the dessin contributes to N(C∞). Sometimes we find the entry 0 in the
third column, meaning that only reducible dessins belong to that case. Also
note that due to the occurrence of reducible dessins the number in the third
column need not equal N(C∞). We have not made any effort to describe the
reducible (generalised) dessins. The polynomials in the fourth column are the
defining polynomials for the field of moduli (equalling the field of definition
in these cases) of the dessins enumerated in the third column.

The abbreviation n.a. stands for ‘not applicable’.

Table 1: Counting dessins in the case m = 4

Partition N(C∞) # dessins fields
19 1 1 1 1 1 1 1 · 1 X

18 2 1 1 1 1 5/2 1 · 1/2 + 2 · 1 X, X2 + 3
17 3 1 1 1 1 1 1 · 1 X
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Table 1: Counting dessins in the case m = 4, (continued)

Partition N(C∞) # dessins fields
17 2 2 1 1 1 2 2 · 1 X

2 − 17
16 4 1 1 1 1 11/4 1 · 1/4 X

16 3 2 1 1 1 3 1 · 1 + 2 · 1 X, X2 + 2
16 2 2 2 1 1 4/3 1 · 1/2 X

15 5 1 1 1 1 2 2 · 1 X
2 + 15

15 4 2 1 1 1 9/2 2 · 1 X
2 + 15

15 3 3 1 1 1 1 1 · 1 X

15 3 2 2 1 1 3 1 · 1 + 2 · 1 X, X2 + 15
15 2 2 2 2 1 5/6 0 n.a.
14 6 1 1 1 1 25/12 2 · 1 X

2 + 3
14 5 2 1 1 1 4 1 · 1 + 3 · 1 X, X3 + 2X + 2
14 4 3 1 1 1 5/2 1 · 1 X

14 4 2 2 1 1 5/2 2 · 1 X
2 + 7

14 3 3 2 1 1 2 1 · 1 + 1 · 1 X, X
14 3 2 2 2 1 3/2 1 · 1 X

14 2 2 2 2 2 1/6 0 n.a.
13 7 1 1 1 1 1 1 · 1 X

13 6 2 1 1 1 13/6 2 · 1 X
2 + 3

13 5 3 1 1 1 1 1 · 1 X

13 5 2 2 1 1 2 2 · 1 X
2 − 65

13 4 4 1 1 1 1 0 n.a.
13 4 3 2 1 1 2 1 · 1 X

13 4 2 2 2 1 1/3 0 n.a.
13 3 3 2 2 1 1 1 · 1 X

13 3 2 2 2 2 1/3 0 n.a.
12 7 2 1 1 1 2 2 · 1 X

2 + 3
12 6 3 1 1 1 19/18 1 · 1 X

12 6 2 2 1 1 19/12 1 · 1 + 1 · 1/2 X, X
12 5 4 1 1 1 1 0 n.a.
12 5 3 2 1 1 4 4 · 1 X

4 − 3X2 + 6
12 5 2 2 2 1 4/3 1 · 1 X

12 4 4 2 1 1 7/4 1 · 1 X

12 4 3 3 1 1 11/6 1 · 1 + 1 · 1/2 X, X
12 4 3 2 2 1 3 1 · 1 + 2 · 1 X, X2 + 3
12 4 2 2 2 2 1/4 0 n.a.
12 3 3 3 2 1 1 1 · 1 X

12 3 3 2 2 2 11/18 1 · 1/2 X

11 9 1 1 1 1 4/3 1 · 1 X

11 8 2 1 1 1 7/2 3 · 1 X
3 −X

2 +X + 1
11 7 3 1 1 1 3 3 · 1 X

3 +X
2 − 3
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Table 1: Counting dessins in the case m = 4, (continued)

Partition N(C∞) # dessins fields
11 7 2 2 1 1 2 2 · 1 X

2 + 7
11 6 4 1 1 1 37/12 2 · 1 X

2 − 33
11 6 3 2 1 1 25/6 3 · 1 X

3 +X
2 −X + 1

11 6 2 2 2 1 13/36 0 n.a.
11 5 5 1 1 1 3/2 1 · 1 X

11 5 4 2 1 1 7/2 3 · 1 X
3 +X

2 − 10X + 10
11 5 3 3 1 1 2 2 · 1 X

2 − 5
11 5 3 2 2 1 1 1 · 1 X

11 5 2 2 2 2 1/6 0 n.a.
11 4 4 3 1 1 3/2 1 · 1 X

11 4 4 2 2 1 1/4 0 n.a.
11 4 3 3 2 1 1 1 · 1 X

11 4 3 2 2 2 1/6 0 n.a.
11 3 3 3 3 1 1/12 0 n.a.
10 10 1 1 1 1 5/4 1 · 1/4 + 2 · 1/2 X, X2 − 5
10 9 2 1 1 1 13/6 2 · 1 X

2 − 5
10 8 3 1 1 1 1 1 · 1 X

10 8 2 2 1 1 1/4 0 n.a.
10 7 4 1 1 1 5/2 1 · 1 X

10 7 3 2 1 1 2 2 · 1 X
2 − 21

10 7 2 2 2 1 3/2 1 · 1 X

10 6 5 1 1 1 25/6 1 · 1 + 3 · 1 X, X3 −X
2 − 3X − 3

10 6 4 2 1 1 71/24 1 · 1 X

10 6 3 3 1 1 1/12 0 n.a.
10 6 3 2 2 1 5/3 1 · 1 X

10 6 2 2 2 2 19/72 0 n.a.
10 5 5 2 1 1 5/4 2 · 1/2 X

2 − 5
10 5 4 3 1 1 1/2 0 n.a.
10 5 4 2 2 1 3 3 · 1 X

3 −X
2 + 2X + 2

10 5 3 2 2 2 7/6 1 · 1 X

10 4 4 4 1 1 1/4 0 n.a.
10 4 4 3 2 1 1 1 · 1 X

10 4 4 2 2 2 5/24 0 n.a.
10 4 3 3 2 2 1 1 · 1 X

10 3 3 3 3 2 1/24 0 n.a.
9 9 3 1 1 1 1/9 0 n.a.
9 9 2 2 1 1 2 1 · 1/2 + 3 · 1/2 X, X3 − 3X − 4
9 8 4 1 1 1 7/12 0 n.a.
9 8 3 2 1 1 19/6 3 · 1 X

3 + 2
9 8 2 2 2 1 1/6 0 n.a.
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Table 1: Counting dessins in the case m = 4, (continued)

Partition N(C∞) # dessins fields
9 7 5 1 1 1 1 1 · 1 X

9 7 4 2 1 1 2 2 · 1 X
2 + 7

9 7 3 2 2 1 3 3 · 1 X
3 − 6X + 12

9 6 6 1 1 1 55/216 0 n.a.
9 6 5 2 1 1 19/6 3 · 1 X

3 − 3X + 3
9 6 4 3 1 1 37/36 1 · 1 X

9 6 3 3 2 1 10/3 3 · 1 X
3 + 2

9 6 3 2 2 2 1/108 0 n.a.
9 5 5 3 1 1 1/6 0 n.a.
9 5 5 2 2 1 1 1 · 1 X

9 5 4 3 2 1 3 3 · 1 X
3 + 3X − 6

9 5 3 3 3 1 1 1 · 1 X

9 4 4 3 2 2 1/12 0 n.a.
9 4 3 3 3 2 1 1 · 1 X

9 3 3 3 3 3 1/36 0 n.a.
8 8 4 2 1 1 9/8 1 · 1/2 X

8 8 3 3 1 1 3/2 1 · 1/2 + 2 · 1/2 X, X2 + 2
8 8 2 2 2 2 7/24 1 · 1/8 X

8 7 6 1 1 1 2 2 · 1 X
2 + 3

8 7 5 2 1 1 3 3 · 1 X
3 + 2X − 2

8 7 4 3 1 1 5/2 2 · 1 X
2 + 6

8 7 4 2 2 1 2 2 · 1 X
2 + 7

8 7 3 3 2 1 1 1 · 1 X

8 7 3 2 2 2 1/6 0 n.a.
8 6 6 2 1 1 307/144 2 · 1 X

2 + 3
8 6 5 3 1 1 2 2 · 1 X

2 − 5
8 6 5 2 2 1 7/6 1 · 1 X

8 6 4 4 1 1 13/48 0 n.a.
8 6 4 3 2 1 29/12 2 · 1 X

2 − 2
8 6 4 2 2 2 157/144 1 · 1 X

8 6 3 3 2 2 1/12 0 n.a.
8 5 5 4 1 1 3/8 0 n.a.
8 5 5 2 2 2 1/12 0 n.a.
8 5 4 3 3 1 2 2 · 1 X

2 − 10
8 5 4 3 2 2 1 1 · 1 X

8 4 4 4 3 1 1 1 · 1 X

8 4 4 4 2 2 9/16 1 · 1/2 X

8 4 3 3 3 3 1/48 0 n.a.
7 7 7 1 1 1 1/3 1 · 1/3 X

7 7 6 2 1 1 1/6 0 n.a.
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Table 1: Counting dessins in the case m = 4, (continued)

Partition N(C∞) # dessins fields
7 7 5 3 1 1 2 2 · 1 X

2 − 21
7 7 4 4 1 1 5/4 2 · 1/2 X

2 + 7
7 7 4 2 2 2 1/12 0 n.a.
7 7 3 3 2 2 1 2 · 1/2 X

2 − 7
7 6 6 3 1 1 1/6 0 n.a.
7 6 6 2 2 1 1 1 · 1 X

7 6 5 4 1 1 1 1 · 1 X

7 6 5 3 2 1 19/6 3 · 1 X
3 + 2X − 2

7 6 4 4 2 1 1 1 · 1 X

7 6 4 3 3 1 1/6 0 n.a.
7 5 5 4 2 1 2 2 · 1 X

2 − 2
7 5 5 3 2 2 1 1 · 1 X

7 5 4 4 3 1 1 1 · 1 X

7 5 4 3 3 2 1 1 · 1 X

6 6 6 4 1 1 1855/2592 1 · 1/2 X

6 6 6 3 2 1 19/72 0 n.a.
6 6 6 2 2 2 1855/7776 1 · 1/6 X

6 6 5 5 1 1 175/144 2 · 1/2 X
2 − 3

6 6 5 4 2 1 7/6 1 · 1 X

6 6 5 3 3 1 1 1 · 1 X

6 6 4 4 2 2 187/288 1 · 1/2 X

6 6 4 3 3 2 1/2 1 · 1/2 X

6 6 3 3 3 3 235/864 1 · 1/4 X

6 5 5 3 3 2 1/12 0 n.a.
6 5 4 4 3 2 1 1 · 1 X

6 4 4 4 3 3 1/36 0 n.a.
5 5 5 5 2 2 1/4 1 · 1/4 X

5 5 4 4 3 3 1/2 1 · 1/2 X

4 4 4 4 4 4 1/24 1 · 1/24 X
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THE MERIT FACTOR PROBLEM

PETER BORWEIN, RON FERGUSON, AND JOSHUA KNAUER

Abstract. The merit factor problem is of considerable practical interest
to communications engineers and theoretical interest to number theorists.
For binary sequences, although it is generally believed that the merit factor
is bounded, it still has not been completely established that the number
of even length Barker sequences, each with merit factor N , is bounded.
In this paper, we present an overview of the problem and results of quite
extensive searches we have conducted in lengths up to slightly beyond 200.

1. Introduction

For the sequence A = [a1, a2, . . . , aN ] the kth acyclic autocorrelation coeffi-
cient, or kth shift sidelobe (0 ≤ k ≤ N − 1), is given by

ck =
N−k∑
j=1

ajaj+k ,

where the superimposed bar indicates the complex conjugate, in the case
where the sequence takes complex values. Of particular interest are the
polyphase sequences, where the modulus of each coefficient is 1. In these
cases the 0th coefficient, or main lobe to engineers, is simply the length of
the sequence. The other coefficients, or positive shift sidelobes, measure self-
interference of a signal based on this sequence. This points, for example,
to the use of signals based on sequences with low autocorrelation in radar
detection. The energy in the kth shift sidelobe is defined as |ck |2 and higher
sidelobe values correspond to energy inefficiencies in the signal. The base
energy of the sequence is the total of the energies in these sidelobes, i.e.,

E =
N−1∑
i=1

|ck|2 .

The merit factor, F , of the sequence relates energy in the sidelobes to energy
in the main lobe,

F =
N2

2E
.

2000 Mathematics Subject Classification. 11B83, 11Y55.
Key words and phrases. Integer sequences, autocorrelation, polynomials, merit factor,
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The merit factor is a measure of the quality of the sequence in terms of
engineering applications.

For number theorists, these coefficients arise in the expression for the mod-
ulus of a polynomial on the unit circle. For p(z) =

∑N−k
j=1 ajz

j−1 the Lα norm

of p(z) on the unit circle C is given by

Lα(p) =

(
1

2π

∫ 2π

0

∣∣p(eiθ)
∣∣αdθ

)1/α

.

In particular, for polyphase sequences and α = 2 and z ∈ C, we have

∣∣p(z)
∣∣2 = f(z)f(z) = N +

N−1∑
k=1

(
ckz

−k + ckz
k
)
,

so that

L2(p) =
√

N . (1)

For the L4-norm we then obtain

L4(p)4 = N 2 + 2
N−1∑
k=1

c2
k

= N 2
(

1 +
1

F

)
,

and

L2(|p|2 − N)2 = L4(p)4 − N 2 =
N 2

F
. (2)

This equation relates a higher merit factor with less deviation of |p| from its

L2 average value of
√

N .

1.1. Barker sequences. Barker sequences are sequences for which |ck | ≤
1 for 1 ≤ k < N , i.e., each autocorrelation coefficient has absolute value
less than or equal one. For binary sequences, this implies that |ck| = 1 for
autocorrelation sums of odd length while |ck| = 0 for sums of even length.
Barker [1] was interested in their use for pulse compression of radar signals.
They exist for lengths 2,3,4,5,7,11,13 and conjecturally for no longer length.
Storer and Turin [45] proved that there are none for odd lengths greater than
13. For even lengths the conjecture has been proved for lengths up to 1022

by Leung and Schmidt [35].
For sequences consisting of 3rd, 4th, or 6th roots of unity, the condition

|ck| = 0 or 1 still applies. For sequences consisting of higher roots of unity
or for more general polyphase sequences, we can have 0 < |ck| < 1. Borwein
and Ferguson [8] have shown the existence of such sequences up to length 63.
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1.2. Skew-symmetric sequences. A binary sequence A = [a1, a2, . . . , aN ]
is symmetric (or reciprocal) if aj = aN+1−j for each j and antisymmetric
if aj = −aN+1−j for each j. A skew-symmetric sequence is formed by in-
terleaving an odd length symmetric sequence with an even antisymmetric
sequence of length greater or less by 1. This means that for skew-symmetric
A = [a1, a2, . . . , aN ], we have

ajaj+k + aN+1−j−kaN+1−j = 0

for odd k, implying that all even length autocorrelation sums are 0. Since
half of the sidelobe energies are zero, it is natural to search for sequences of
high merit factor among skew-symmetric sequences.

The equivalent condition with generalized or polyphase sequences would
require a conjugate skew-symmetric sequence, i.e., a sequence which is con-
jugate reciprocal interleaved with a sequence which is the negative of its
conjugate reciprocal. A difference here is that the odd length sequence may
be either conjugate reciprocal or the negative of its conjugate reciprocal. In
either case, we have

ajaj+k + aN+1−j−kaN+1−j = 0

for odd k so that again the even length autocorrelation sums are all 0. Thus we
may expect to find high merit factor sequences among this class. In practice,
however, we find that more optimal examples are obtained among reciprocal
sequences of odd length. Then for any k,

ajaj+k + aN+1−j−kaN+1−j = ajaj+k + aj+kaj

is purely real. In these cases, the imaginary part of each autocorrelation
disappears, so, in effect, half of the sidelobe energy expansion terms disappear
for these sequences as well.

The square of the middle entry is either 1 or −1. For binary sequences, this
implies that an odd length symmetric sequence is interleaved with an even
length antisymmetric sequence, since i =

√
−1 cannot be an entry.

In all of these cases, specifying the entries up to and including the middle
term is enough to determine the entire sequence, so searching unrestricted
sequences at length N is comparable in complexity to searching symmetrics,
antisymmetrics and skew-symmetrics at approximately double the length.

Thus, with binary sequences, we have evidence that, with high probabil-
ity, we have found the optimal merit factor sequences for binary sequences
up to length 85, and for skew-symmetrics up to length 165. For polyphase
sequences, we believe the optimal results to be highly accurate to length
45. The best examples found at longer odd lengths are often from searches
restricted to symmetric searches.

1.3. Sequence equivalence. There are a number of operations for which
the sidelobe energies of a sequence remain unchanged and which generate a
group under composition. These include:
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1. Multiplication of all entries by a constant of modulus 1.
2. Taking the complex conjugate of all entries.
3. Sequence reversal.
4. Multiplication of successive entries by linearly increasing powers of a con-
stant of modulus 1.

As operations on the space of binary sequences, the second is redundant
while the remaining three generate a noncommutative group of order 8. Mul-
tiplying all entries by −1 or every second entry by −1 will give a new sequence,
so these operations applied to a sequence of length at least 2 will produce
at least 4 different sequences. In most cases, sequence reversal will add 4
more. However, for symmetric, antisymmetric or skew-symmetric sequences
the number produced remains at 4.

Using the first and fourth operations, any sequence can be transformed
to a sequence with 1’s as the first two entries. Using sequence reversal, fol-
lowed again by transformation to a sequence with 1’s as the first two entries,
we obtain a second sequence, not necessarily different. Applying complex
conjugation to these gives us a total of 4 from which to choose a canonical
representative of the orbit class of the original sequence. One method is to
compare successive entries and prefer a sequence for which the entry has a
smaller argument. Normalization to this canonical form allows us to identify
equivalence between sequences with the same base energy.

1.4. Flat polynomials. ‘Flatness’ of a polynomial on the unit circle is a
term used to describe closeness of the modulus of its values to the average
value over the whole circle. Equation 2 shows how the merit factor may be
used to provide a measure for flatness of ±1 polynomials. This is further
illustrated in Figures 1, 2, 3 below, showing the modulus of the polynomial
p(z) =

∑n
j=1 ajz

j−1 on the unit circle, where each A = [a1, a2, . . . , a63] is a
sequence of length 63.

Figure 1 arises from the randomly generated binary sequence

42F11C5DFFE24B8E

in hexadecimal notation with merit factor 1.4185. Here the leading 4 converts
to 0100 in binary and 1,−1,−1 in terms of ±1 coefficients (dropping the
leading 0), while the following 2 converts to 0010 in binary and −1,−1, 1,−1
in ±1 coefficients.

Figure 2 represents the polynomial formed for the binary sequence

6C9B015052F14339

with merit factor F = 9.5870, which we believe is optimal for binary sequences
of this length.

Figure 3 is a graph of the modulus of the polynomial formed with coeffi-
cients from the polyphase Barker sequence of length 63 with entries aj = e2πiφj
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Figure 1. Modulus of p(e2πit) for binary sequence with F =
1.4185 and 0 ≤ t ≤ 1.
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Figure 2. Modulus of p(e2πit) for binary sequence with F = 9.5870 .

with φ1, φ2, . . . , φ63 having the values

0.000000, 0.000000, 0.044072, 0.100041, 0.124944, 0.044316, 0.915805,
0.834292, 0.896073, 0.072380, 0.153734, 0.145180, 0.264172, 0.409227,
0.678385, 0.779028, 0.703430, 0.582492, 0.464976, 0.434226, 0.137145,
0.048468, 0.004949, 0.928442, 0.365491, 0.394539, 0.867998, 0.074881,
0.666226, 0.614514, 0.194754, 0.471911, 0.761195, 0.956267, 0.323923,
0.119675, 0.556891, 0.854043, 0.099691, 0.332923, 0.935108, 0.561814,
0.731794, 0.132518, 0.422282, 0.875526, 0.519252, 0.026738, 0.368575,
0.879993, 0.399091, 0.939885, 0.425655, 0.919075, 0.551357, 0.209371,
0.855254, 0.577566, 0.272426, 0.992504, 0.662106, 0.376538, 0.022081,

which has F = 37.5022.
A high merit factor does not guarantee uniformity of closeness, since there

may be narrow domains where spikes occur as illustrated in Figure 2. Still,
the tendency toward a more uniform flatness with increasing merit factor is
shown.

In his book [37], Littlewood introduced this notion of flatness and its ex-
pression in terms of the L2 and L4 norms. At that time, a plot of known
optimal merit factor values would have had the appearance of Figure 4.
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Figure 3. Modulus of p(e2πit) for polyphase sequence with
F = 37.5022 .
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Figure 4. Optimal merit factor values for binary sequences
to length 21.

The values for lengths 2,3,4,5,7,11, and 13 are in linear succession and cor-
respond to Barker sequences. These lend considerable bias to the picture,
the other points being more scattered. This may have been what led him to
suggest the existence of an infinite sequence of polynomials pNi

with merit
factor of order

√
Ni which would imply, in particular, that merit factors are

unbounded. He further formulated the following conjecture:
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Littlewood Conjecture: There exist constants C1, C2 such that we can
find a sequence of polynomials pN of increasing degree N with ±1-coefficients
such that

C1

√
N <

∣∣pN (z)
∣∣ < C2

√
N

for all z on C.

The Rudin-Shapiro polynomials satisfy the upper bound of this conjecture.
The existence of a sequence satisfying the lower bound, however, has not yet
been confirmed. In the extension to polyphase sequences, Kahane [29] has
both confirmed the conjecture and the existence of sequences with unbounded
merit factors.

In contrast to Littlewood’s suggestion, Golay [21], using a hypothesis that
sidelobe energies move toward statistical independence as the length of binary
sequences increase, developed an argument to show an asymptotic limit of
12.32. . . as maximal. This certainly does not settle the question, but gives
an expression to what probably most researchers now believe, i.e., that an
asymptotic upper bound exists.

It was noted by Turyn and later proved [26] that Legendre sequences ro-
tated by 1/4 of their lengths will provide sequences with merit factors having
an asymptotic limit of 6. A few authors suggested that this might be op-
timal. More recently, a further construction applied to Legendre sequences
appears to produce sequences with asymptotic limit of approximately 6.34
for the merit factor [6], [33].

Computationally, this is still a very difficult problem. From results in
the ranges for which adequate data can be collected, we can project that
an asymptotic limit of F > 7 for sequences of increasing length is certainly
expected. There is good evidence for F > 8 as well and even F > 9 appears
likely. Finding another sequence with F > 10 beyond length 13, if indeed
such exists, may be computationally out of range.

More comprehensive introductions to the history and applications of the
binary merit factor problem are given in [25] and [28].

2. Search algorithms

Where a sequence has entries drawn from a finite alphabet, e.g., the Kth
roots of unity, the number of sequences at a given length is finite. Thus,
finding the optimal sequences of a given type up to a fixed length by checking
the whole space is theoretically possible, but quickly becomes impractical as
the length increases. More clever methods may be applied, which eliminate
vast sections of the space from consideration as the search progresses in order
to confirm optimal examples.

In contrast, at least beyond very short lengths, the search space for op-
timal polyphase sequences is not finite. Since the range of each coordinate
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is continuous, methods of calculus may be used to transform this into a fi-
nite problem. However, the number of local maxima and minima proliferates
as the length increases, so this type of exhaustive search bogs down quite
quickly.

Greater reach is achieved by using directed stochastic methods. Such al-
gorithms include direct descent, simulated annealing, great deluge, genetic,
and tabu search. Here optimality is not confirmed, but on the assumption
that the number of locally optimal solutions within a given range is finite and
the search method is not biased in locating these, statistical analysis using
capture-recapture [40],[36] or the inverse collectors problem [34] can establish
levels of confidence.

2.1. Exhaustive searches. For binary sequences, this is essentially a 2N−2

problem. Using a Gray code helps minimize recalculation through the it-
eration. To obtain precise information on base energy distributions we have
conducted exhaustive searches up to length 44 for the general case and length
89 for skew-symmetrics.

2.2. Branch and bound. This is the method which has been used to con-
firm optimality of merit factor for general sequences up to length 60 [38],
and for skew-symmetric sequences up to length 109 [9]. It uses the fact that
the shorter and increasing length autocorrelation sums only involve terms
progressing from the ends of a sequence to the middle. As a sequence is
developed in this way, more sidelobe energy values become determined and
better lower bounds for others are established. If this sum already exceeds
some predetermined bound, then continued development can be aborted and
the iteration passed to an earlier stage. The amount of truncation and thus
the speed of the search space depends on this bound. A known sequence of
low base energy supplies a good initial bound. This can be replaced when a
better example is found.

2.3. Directed stochastic searches. A search starts either with a sequence
in which all the coordinate values are randomly generated or a random se-
lection of the coordinate values of an existing sequence are regenerated. A
coordinate position is chosen either at random or by some directed method, a
change in value is proposed and either accepted or rejected according to some
selection criterion, which then returns either an altered or the same sequence
accordingly. This second process repeats until either no further improvement
is possible using this method or some other limit is reached. The process then
either reverts to an earlier position or restarts. The decision to discontinue
may be based on either time, computational resources, or an estimation that
any improvement is unlikely.

For the descent method, changes are allowed only if there is an improve-
ment in quality. Initially the coordinates for proposed changes are chosen
at random, though a final stage may be added where coordinates are chosen
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iteratively until no further improvement is possible. Experience has shown,
however, that better results are achievable if the demand for improvement at
each stage is relaxed.

At the starting stage we have used the great deluge approach to locate
a sequence of merit value above an initial bound. The method of descent
was then used first by random and finally by consecutive (with wrap-around)
choice of coordinates until either termination or a sequence with merit value
exceeding a second bound was located.

Two levels of intensified search then followed for appropriate sequences in
an approach derived from the genetic method.
1) For the same length sequence coordinates were chosen in order from the be-
ginning of the sequence. Any sequence found exceeding another preset bound
was chosen for further development. Otherwise the process backtracked to
an earlier stage from which a further choice was possible.
2) An appropriate sequence from the first stage was then stripped back, drop-
ping coordinate entries at both ends successively until either the merit fac-
tor dropped below an established bound or the last coordinate change was
reached but not exceeded. This core sequence was then extended at either
end iteratively while still retaining the merit factor bound.

These intensification methods ensure a comprehensive search of clusters of
sequences of high merit factor at neighbouring lengths.

For binary sequences, there is a single option for changing a coordinate
value or two choices for an extension of one unit. For polyphase sequences,
after a coordinate position was chosen for investigation, the base energy was
expressed as a function of this coordinate variable, keeping other coordinates
at their established values. This function was found to have up to two min-
imum values. The coordinate value at the lower of these was chosen for the
proposed change.

2.4. Comparison of methods. For determining optimal values for the merit
factor of binary sequences, the resources required to conduct the branch and
bound search at length 60 can be considered roughly the equivalent of those
required to perform a fully exhaustive search at length 53, or a directed sto-
chastic search at length 90 with a 99% confidence level of success. In terms
of complexity, this translates to O(2N ) for exhaustive methods, O(1.84N ) for
branch and bound and O(1.5N ) for the directed stochastic algorithm used
here.

3. Results

3.1. Growth trends for merit factor values. Figures 5 and 6 show plots
of best known merit factor values recorded for binary sequences and for the
more general polyphase sequences. We believe Figure 6 shows probable op-
timal values for unrestricted binary sequences with lengths into the late 80’s
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and for skew-symmetrics up to length 160. For polyphase sequences this
confidence extends to length 45.

The horizontal line in Figure 5 is drawn for reference at F = 9. Up to
length 90, there appears to be a trend for more of these values to approach
or exceed 9. Beyond N = 112 all records are derived from skew-symmetrics,
which appear to reflect trends for unrectricted sequences at half the lengths.

Figure 6 shows the much more rapid growth for polyphase sequences.
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Figure 5. Largest merit factors recorded for binary sequences.

3.2. Distribution of base energies for binary sequences. Figure 7 shows
histograms of all 239 values of the reciprocal of the merit factor, 1/F =
2E/N 2, at length N = 39, normalized to have unit area. Each base energy
value is congruent to 3 modulo 4. The graph on the left seems to be aligned
with two smooth curves. A more careful analysis finds that it is better sep-
arated into four sections, each corresponding to a separate congruence class
modulo sixteen for the base energy and each seeming to conform to a smooth
curve. An alternative is to combine the congruences classes 3,7,11,15 modulo
16, giving the histogram on the right.

This shows a remarkable resemblance to the extreme value distribution.
In fact, this was discovered through curve-fitting as illustrated in Figure 8.
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Figure 6. Largest merit factors recorded for polyphase sequences.
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Figure 8. Plot of the logarithm of the values in the graph on
the right in Figure 7 and and a plot of the logarithm of a linear
fit to the right tail minus the values for this adjacent graph.

These graphs point to an exponential tail to the right but a doubly exponen-
tial growth on the left which are characteristic for the extreme value distri-
bution. Figure 9 shows least squares fits of the extreme value distribution
to histograms of 1/F values at lengths 39, 99, and 300. Since obtaining full
distributions at lengths 39 and 300 is computationally out of range, these we
obtained for 237 and 236 sequences generated by a random process.
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Figure 9. Least squares fit of extreme value distribution to
1/F distributions at lengths 39, 99 and 300.

Our primary interest is in the tail of the distributions on the left. The least
squares fit is best at length 99. At 39, the curve overestimates the count of
higher merit factor sequences while at 300 it gives an underestimate.

3.3. High merit factor binary sequences. Using our directed stochas-
tic search method we have found approximately 2800 unequivalent sequences



64 The merit factor problem

with merit factor greater than 8, of which probably more than 80% may be
classified as new discoveries. This comprised two separate programs, the first
designed to search through general unrestricted sequences and the second re-
stricted to skew-symmetrics. The first found a sequence with merit factor
greater than eight at length 115, while the second found such a sequence
at length 233. The greatest length previously recorded was 161 by Militzer,
Zamparelli and Beule[39]. The intensification methods described in the pre-
vious section were applied to high merit factor sequences found during the
skew-symmetric search to find other non-skewsymmetric sequences of high
merit in the surrounding cluster, finding sequences with F ≥ 8 for all lengths
between 100 and 200 except 112 and 114. A sequence with F > 8 at 112 was
found using the first program.

We estimate the first program to have been close to exhaustive up to length
85, and the second to length 161 as outlined in the analysis below. Confidence
that over 50% of the sequences with F > 8 have been found remains to lengths
90 and lengths 181 respectively. Comparing the percentage that the skew-
symmetric sequences form of sequences found at odd lengths provides another
rough yardstick. Between lengths 61 and 85 skew-symmetrics form 11% of
sequences found at odd lengths with F ≥ 8. These increase to 26% and 77%
respectively for odd lengths from 91 and 99 and from 101 to 109. In fact
from Figure 10 we expect this percentage to decrease from 11%, so we expect
that we have found less than 40% and 12% of sequences with F ≥ 8 in these
respective ranges.

Figure 10 and Table 1 illustrate growth trends in numbers of high merit
factor sequences. The first, Figure 10, is a log-linear graph of numbers of
inequivalent sequences with F ≥ 7. This suggests exponential growth in
these numbers and gives what we suggest is the first empirical evidence that
lim sup Fmax > 7.

Table 1 lists estimated numbers of sequences with F > 8 for general se-
quences and F > 8, F > 8.5 for skew-symmetrics at increasing lengths. The
growth in numbers found in the general case is noticeable but still modest
in lengths up to 85. For skew-symmetrics in lengths up to 181, where in
depth searches were still possible, the growth in numbers with F ≥ 8 is more
apparent, and still apparent for F > 8.5.

Before our work, there were 15 inequivalent sequences with F ≥ 9 known,
one each at lengths 11, 13, 27, 64, 71, 83, 95, 105, 125, 127, 129, 131 and
three at length 67. We have found 23 more which are listed in Table 2. There
seems to be a trend for more of these to appear at longer lengths, but it is
difficult to say more.

3.4. The inverse collector’s problem. In collecting data on sequences
with F ≥ 7, we continued to run our programs at lengths up to 85 to the
point that we could have good expectation that the best examples were col-
lected. In advance, we do not know the size of the sample space of sequences
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N F > 8 N † F > 8 F > 8.5
73 8 159 44 5
74 3 161 57 4
75 9 163 52 5
76 5 165 57 3
77 11 167 73 5
78 12 169 73 11
79 12 171 58 7
80 14 173 90 13
81 17 175 97 8
82 13 177 99 10
83 16 179 153 9
84 10 181 114 11
85 18 183 125 9

Table 1. Estimated numbers of inequivalent sequences with
F ≥ 8. Here † denotes skew-symmetric sequences.
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N F Hexadecimal sequence
63 9.5870 64CBED0FAFEAC631
68 9.2480 FFD0B564E4D74798E
79 9.2050 7F36491D815A531AA871
80 9.0909 FFE81E89A8D1C665A9A5
89 9.1678 1FF924F246C19C2D4B8D454
95 9.3427 7FFC0FA333154B534DA71C69
98 9.0775 3FFAA55B45978719636C4F633
102 9.1746 383F0C38A4D5D6673480256A44
126 9.0720 3C7854315FE710B9990BB655FB2FE96D
149 9.0542 1C71C7AB46CDDABF9F82959501DCC6F016DB6D†

149 9.1137 1FE0003921C9CC3E4CBD0CE52CD8DA392AAA55†

157 9.0223 1F0600F83071FF993CC57ECD39955B6B294AA6B5†

165 9.2351 1D5B2B41689B1B24BAA6E846010E31B1887AF031FD†

169 9.3215 1C1C7C623B8EB1FD05DAFDD41DEBD5B0491226D6DAD†

172 9.0526 E03F9CF6030FF9EDBF293338351C5954B2A74D952A5
173 9.3179 18006FFE1FCF33F079C3D999D2D96B5334D5A5546AA9†

173 9.3645 1E03F9CF6030FF9EDBF293338351C5954B2A74D952A5†

175 9.0768 6AA32AF1A35998A5E530DAF8D30687D9983792FF37FE†

177 9.5052 1D3842C58FCB33401779175F7B977AAF330D49EC2E93D†

178 9.2915 3D3842C58FCB33401779175F7B977AAF330D49EC2E93D
179 9.0974 7A70858B1F9666802EF22EBEF72EF55E661A93D85D27A†

183 9.0073 6311C73B838E2A72BF958A85FD81ABF27F6DB5BB249136†

189 9.0847 1C39CE1FE1CBC67F3B7BF9002AB951713566D0DA55A4D92D†

Table 2. New sequences found with merit factor > 9. Here †

indicates a skew-symmetric sequence.

with energies in this range. At some point, however, the continual repetition
of previous examples suggests that we come close to exhausting this sample
space. We use the statistical model described below to give substance to this
observation. Part of this may be described as the inverse collector’s prob-
lem as described in [11] and [34]. However, our problem is not specifically
to establish the most probable size of the sample space, but to estimate the
likelihood that we have found the example with the lowest base energy.

Let S be the size of the sample space, i.e., the total number of sequences,
unique up to equivalence as described above, with F ≥ 7. Let n be the
number of trials in terms of sequences collected, and k the number of these
which are different. Where M is the event that we have collected the optimal
example, what we seek to evaluate is

P (M | n, k) ,
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the probability that we have the best example, given the values n and k
arising from our data. We make assumptions:
(1) the occurrence of the different examples are equally likely;
(2) there is no specific bias on the actual size of the sample space in the range
where this is significant.

Then we use

P (M | n, k) =
∑
i≥0

P (M | S = k + i, k)P (S = k + i | n, k) .

From our assumptions, we have P (M | S = k + i, k) = k/(k + i). Using
Baysian probability theory, we then derive

P (S = k + i | n, k) =
P (k | S = k + i, n)∑

j≥0 P (k | S = k + j, n)
.

Example: At length 80 we collected 9965 sequences of which 1636 were
different. This calculates to a 0.998 probability that we have the optimal
example [8], [9].

It remains, at present, computationally hard to verify optimality of merit
factor values beyond length 60 for unrestricted binary sequences and about
double this for skew-symmetrics. Other authors have published examples with
‘high’ merit factor without any further assessment of quality. This method
of statistical analysis offers a way to estimate quality.

4. Comments

Determining the maximal merit factor for binary sequences of length N is
widely regarded as a difficult task in combinatorial optimization. Indeed it
appears as the fifth problem on CSPLib [24], a library of test problems for
use in benchmarking constraint solvers.

We have found good evidence that the upper limit for maxN F is greater
than 8 and in fact greater than 8.5. These maximal values may routinely
exceed 9 in lengths over 200, but it would be difficult to establish this com-
putationally. With the information we have collected, it is difficult to project
whether values will continue to grow slowly or level off.

The match of the distribution of 1/F to the extreme value distribution for
lengths under 100 is intriguing. If this continued, it would suggest a sharp
cutoff for merit value as lengths increased. However, this fit becomes less
good as we go further, giving an underestimate for the tail containing high
merit factor values. Perhaps a match to a gaussian distribution is a better
choice for longer lengths, but this would require further investigation.

The upper limit for maxN F is known to be infinite for polyphase sequences.
What growth rates can be established for maxN F? Figure 6 suggests this
might be close to linear for polyphase sequences. If it can be established that
maxN F is bounded for binary sequences, is this true for other finite alphabet
sequences as well?
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BARKER SEQUENCES AND FLAT POLYNOMIALS

PETER BORWEIN AND MICHAEL J. MOSSINGHOFF

Abstract. A Barker sequence is a finite sequence of integers, each ±1,
whose aperiodic autocorrelations are all as small as possible. It is widely
conjectured that only finitely many Barker sequences exist. We describe
connections between Barker sequences and several problems in analysis
regarding the existence of polynomials with ±1 coefficients that remain
flat over the unit circle according to some criterion. First, we amend
an argument of Saffari to show that a polynomial constructed from a
Barker sequence remains within a constant factor of its L2 norm over the
unit circle, in connection with a problem of Littlewood. Second, we show
that a Barker sequence produces a polynomial with very large Mahler’s
measure, in connection with a question of Mahler. Third, we optimize an
argument of Newman to prove that any polynomial with ±1 coefficients
and positive degree n−1 has L1 norm less than

√
n − .09, and note that a

slightly stronger statement would imply that long Barker sequences do not
exist. We also record polynomials with ±1 coefficients having maximal L1
norm or maximal Mahler’s measure for each fixed degree up to 24. Finally,
we show that if one could establish that the polynomials in a particular
sequence are all irreducible over Q, then an alternative proof that there
are no long Barker sequences with odd length would follow.

1. Introduction

For a sequence of complex numbers a0, a1, . . . , an−1, define its aperiodic
autocorrelation sequence {ck} by

ck :=
n−1−k∑

j=0

ajaj+k

for 0 ≤ k < n and

c−k := ck .

We are interested here in the case when the aj are all of unit modulus, in
particular when each aj = ±1. Thus the peak autocorrelation c0 has the
value c0 = n, and in many applications it is of interest to minimize the off-
peak autocorrelations c±k with 0 < k < n. In the integer case, clearly the
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optimal situation occurs when |ck| ≤ 1 for each k �= 0, so ck = 0 if 2 | (n− k)
and ck = ±1 otherwise. A sequence achieving this for each k is called a
Barker sequence. Barker first asked for ±1 sequences with this property in
1953 [1]. (In fact, Barker asked for the stricter condition that ck ∈ {0,−1}
for k �= 0.) For the complex unimodular case, we say {ak} is a generalized
Barker sequence if each off-peak autocorrelation satisfies |ck| ≤ 1.

Since negating every other term of a sequence {ak} does not disturb the
magnitudes of its autocorrelations, we may assume that a0 = a1 = 1 in a
Barker sequence. With this normalization, just eight Barker sequences are
known, all with length at most 13. These are shown in Table 1. (Only three of
these satisfy the more strict condition requested by Barker—the ones of length
3, 7, and 11.) It is widely conjectured that no additional Barker sequences
exist, and in section 2 we survey some known restrictions on their existence.
First however we describe a broader conjecture that arises in signal processing,
and an equivalent problem in analysis regarding norms of polynomials.

Sequences with small off-peak autocorrelations are of interest in a number
of applications in signal processing and communications (see [1, 18, 13]). In
engineering applications, a common measure of the value of a sequence is the
ratio of the square of the peak autocorrelation to the sum of the squares of the
moduli of the off-peak values. This is called the merit factor of the sequence.
For a sequence An = {aj} of length n, its merit factor is defined by

MF(An) :=
n2

2
∑n−1

k=1 |ck|2
.

Golay introduced this quantity in 1972 [16], and in [17] he conjectured that the
merit factor of a binary sequence is bounded, presenting a heuristic argument
that MF(An) < 12.32 for large n. Several researchers in engineering, physics,
and mathematics have made similar conjectures; see for instance [6] or [18].
It is clear, however, that a Barker sequence of length n has merit factor near
n, so certainly Golay’s merit factor conjecture contains the question of the
existence of long Barker sequences as a special case.

Table 1. Barker sequences with a0 = a1 = 1.

n Sequence Merit factor
2 ++ 2.00
3 ++- 4.50
4 +++- 4.00
4 ++-+ 4.00
5 +++-+ 6.25
7 +++--+- 8.17

11 +++---+--+- 12.10
13 +++++--++-+-+ 14.08
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The merit factor problem may be restated as a question on polynomials.
We first require some notation. Given a sequence {aj}n−1

j=0 , define a polynomial
f(z) of degree n − 1 by

f(z) =
n−1∑
j=0

ajz
j .

For a positive real number p, let ‖f‖p denote the value

‖f‖p :=

(∫ 1

0

∣∣f(
e(t)

)∣∣p dt

)1/p

,

where e(t) := e2πit. If p ≥ 1, this is the usual Lp norm of f on the unit circle.
We also let ‖f‖∞ denote the supremum norm of f ,

‖f‖∞ := lim
p→∞

‖f‖p = sup
|z|=1

|f(z)| ,

and we let ‖f‖0 denote its geometric mean on the unit circle,

‖f‖0 := lim
p→0+

‖f‖p = exp

(∫ 1

0
log

∣∣f(
e(t)

)∣∣ dt

)
.

This is Mahler’s measure of the polynomial. We recall that if p < q are
positive real numbers and f is not a monomial, then

‖f‖0 < ‖f‖p < ‖f‖q < ‖f‖∞ .

Assuming that |aj | = 1 for each j, we have ‖f‖2
2 = n by Parseval’s formula,

and, since z = 1/z on the unit circle, it is easy to see that

‖f‖4
4 =

∥∥f(z)f(z)
∥∥2

2 =
∥∥∥

n−1∑
k=1−n

ckz
k
∥∥∥2

2
= n2 + 2

n−1∑
k=1

|ck|2 . (1.1)

Thus, the merit factor of a sequence {aj} can be expressed in terms of certain
Lp norms of its associated polynomial,

MF(f) :=
‖f‖4

2

‖f‖4
4 − ‖f‖4

2

.

Golay’s problem on maximizing the merit factor of a family of sequences of
fixed length is thus equivalent to minimizing the L4 norm of a collection of
polynomials of fixed degree. This latter problem is one instance of a family
of questions regarding the existence of so-called flat polynomials.

For a positive integer n, let Un denote the set of polynomials in C[x] defined
by

Un :=

{
f(z) =

n−1∑
j=0

ajz
j : |aj | = 1 for 0 ≤ j < n

}
,
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and let Ln denote the subset

Ln :=

{
f(z) =

n−1∑
j=0

ajz
j : aj = ±1 for 0 ≤ j < n

}
.

We call the first set the unimodular polynomials of degree n − 1, and the
second set the Littlewood polynomials of fixed degree. In 1966, Littlewood
[23] asked about the existence of polynomials in these sets with particular
flatness properties. More precisely, he asked if there exist absolute positive
constants α1 and α2 and arbitrarily large integers n such that there exists a
polynomial fn ∈ Un (or, more strictly, fn ∈ Ln), where

α1
√

n ≤ |fn(z)| ≤ α2
√

n

for all z with |z| = 1. Since each polynomial in such a sequence never strays
far from its L2 norm, we say such a sequence is flat. In 1980, Körner [21]
established that flat sequences of unimodular polynomials exist, and in the
same year Kahane [20] proved moreover that for any ε > 0 there exists a flat
sequence of unimodular polynomials with α1 = 1 − ε and α2 = 1 + ε. Such
sequences are often called ultraflat.

Much less is known regarding flat sequences of Littlewood polynomials. The
Rudin-Shapiro polynomials [28, 31] satisfy the upper bound in the flatness
condition with α2 =

√
2, but no sequence is known that satisfies the lower

bound. In fact, the best known result here is due to Carrol, Eustice, and Figiel
[8], who used the Barker sequence of length 13 to show that for sufficiently
large n there exist polynomials fn ∈ Ln with |fn(z)| > n.431 on |z| = 1. Also,
in 1962 Erdős [12] conjectured that ultraflat Littlewood polynomials do not
exist, opining that there exists an absolute positive constant ε such that

‖f‖∞
‖f‖2

> 1 + ε

for every Littlewood polynomial of positive degree. (Littlewood however
[23, sec. 6; 24, prob. 19] in effect conjectured that no such ε exists.) Since
‖f‖4 ≤ ‖f‖∞, we see then that Golay’s merit factor problem is in fact a
stronger version of Erdős’ conjecture. Further, from (1.1) it follows that if
the coefficients of f form a Barker sequence of length n, then

‖f‖4√
n

≤
(

1 +
1

n

)1/4

< 1 +
1

4n
.

Therefore, to show that long Barker sequences do not exist, it would suffice
to prove that ‖f‖4 ≥

√
n + 1

4
√

n
for f ∈ Ln and n large. Similar observations

occur for example in [4, Chap. 14] and [5].
In this paper, we describe some further connections between Barker se-

quences and flatness problems for polynomials. Section 2 summarizes some
known results on Barker sequences. Section 3 shows that long Barker se-
quences provide an answer to Littlewood’s question on flat polynomials,
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amending an argument of Saffari that connects these two problems. Section 4
then ties the existence of long Barker sequences to a problem of Mahler’s con-
cerning Littlewood polynomials with large measure. Section 5 connects the
Barker sequence question to problems on the L1 norm of Littlewood polynomi-
als, and optimizes an argument of Newman to provide an improved restriction
on the flatness of Littlewood polynomials with respect to this norm. Finally,
Section 6 outlines a possible alternative method for establishing that there
are no Barker sequences of certain lengths.

2. Barker sequences

We first record some facts about Barker sequences. The following results
are due to Turyn and Storer [35, 32]; we include the proof here for the reader’s
convenience.

Theorem 2.1. Suppose a0, a1, . . . , an−1 is a sequence of integers with each
ai = ±1, and let {ck} denote its aperiodic autocorrelations. Then

ck + cn−k ≡ n (mod 4) .

If in addition the sequence {ak} is a Barker sequence, then

akan−1−k = (−1)n−1−k.

If furthermore n is even and n > 2, then n = 4m2 for some integer m, and
cn−k = −ck for 0 < k < n. If n is odd, then ck + cn−k = (−1)(n−1)/2 for each
k.

Proof. Since ck records the difference between the number of positive and
negative terms in

∑n−1−k
i=0 aiai+k, it follows that

n−k−1∏
i=0

aiai+k = (−1)(n−k−ck )/2 (2.1)

for 0 ≤ k < n. Multiplying this product by the same expression with k
replaced by n − k, we obtain

(−1)(n−ck−cn−k )/2 =

k−1∏
i=0

aiai+n−k

n−k−1∏
i=0

aiai+k = 1 ,

so ck + cn−k ≡ n (mod 4). Assume now that {ak} forms a Barker sequence of
length n. Multiplying (2.1) by the same equation with k replaced by k + 1,
we compute that

akan−1−k = (−1)n−1−k.

Also, certainly ck = 0 if 0 < k < n and n ≡ k (mod 2), and ck = ±1 for the
other k in this range. In particular, if n is even and n > 2, then c2 +cn−2 = 0,
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so n ≡ 0 (mod 4). It follows then that ck + cn−k = 0 for 0 < k < n in this
case. Last, since

( n−1∑
i=0

ai

)2

= c0 +
n−1∑
k=1

(ck + cn−k) = n ,

we see that n is a perfect square if n ≥ 4 is even. �

Recall that a polynomial f(z) with integer coefficients is skew-symmetric if
f(z) = ±zdeg ff(−1/z). We remark that Theorem 2.1 then shows that every
Barker sequence of odd length corresponds to a skew-symmetric Littlewood
polynomial.

Much more is known about possible lengths of Barker sequences. Turyn and
Storer [35] proved that if the length n of a Barker sequence is odd then n ≤ 13,
so the complete list for this case appears in Table 1. It also follows from
this that no additional sequences satisfy Barker’s original requirement for
sequences whose off-peak autocorrelations are all 0 or −1, since Theorem 2.1
implies that any such sequence must have length n ≡ 3 (mod 4). For the
even case, we write n = 4m2. In 1965 Turyn [33] showed in effect that m
must be odd and cannot be a prime power (see also [2, sec. 2D and 4C], [9],
[10]). In 1990, Eliahou, Kervaire, and Saffari [11] proved that if p | m then
p ≡ 1 (mod 4); in 1992 Eliahou and Kervaire [9] and Jedwab and Lloyd [19]
both used this constraint, together with some additional restrictions on m,
to show that there are no Barker sequences with 1 < m < 689. In 1999,
Schmidt [30] obtained much stronger restrictions on m, determining that no
Barker sequences exist with m ≤ 106. This method was refined and extended
by Leung and Schmidt in 2005 [22], who established that no Barker sequences
exist with 1 < m ≤ 5·1010, that is, with even length n satisfying 4 < n ≤ 1022.
Another restriction was obtained in 1989 by Fredman, Saffari, and Smith [15],
who proved that a Barker sequence may not be palindromic.

3. Littlewood’s problem

In 1990, Saffari [29] noted that if there are in fact infinitely many Barker
sequences, then Littlewood’s conjecture on the existence of flat polynomials
with ±1 coefficients follows. We present Saffari’s proof here, in part because
we require the result in Section 4, but also to correct an oversight in the
original article. The correction here affects the values of the constants in the
following theorem.

Theorem 3.1. Suppose f is a Littlewood polynomial of degree n − 1 whose
sequence of coefficients {ak} forms a Barker sequence of length n. Then

α1 + O

(
1

n

)
≤ |fn(z)|√

n
≤ α2 + O

(
1

n

)
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for each z of modulus 1, where α1 =
√

1 − θ = 0.52477485 . . ., α2 =
√

1 + θ =
1.31324459 . . ., and

θ = sup
t>0

sin2 t

t
= 0.7246113537 . . . .

Proof. Suppose f ∈ Ln with n > 13, and write n = 4m. Using the fact that
the off-peak autocorrelations satisfy cn−k = −ck from Theorem 2.1, and that
c2j = 0 for j ≥ 1, we compute

∣∣f (
eit

)∣∣2 − n = 2

n−1∑
k=1

ck cos kt

= 2

2m−1∑
k=1

ck

(
cos kt − cos((n − k)t)

)

= 4 sin(2mt)
2m−1∑
k=1

ck sin
(
(2m − k)t

)

= 4 sin(2mt)

m∑
k=1

c2m−2k+1 sin
(
(2k − 1)t

)
.

Thus ∣∣∣∣∣
|f (eit)|2

n
− 1

∣∣∣∣∣ ≤ θm , (3.1)

where θm is defined by

θm := max
0≤t<2π

|sin(2mt)|
m

m∑
k=1

∣∣sin(
(2k − 1)t

)∣∣ .

Define φm and ψm by

φm := max
0≤t≤π/4

|sin(2mt)|
m

m∑
k=1

∣∣sin(
(2k − 1)t

)∣∣
and

ψm := max
0≤t≤π/4

|sin(2mt)|
m

m∑
k=1

∣∣cos
(
(2k − 1)t

)∣∣ ,

so that θm = max{φm , ψm}. For φm , note first that the quantity

1

m

m∑
k=1

∣∣sin(
(2k − 1)t

)∣∣
is the midpoint approximation over m subintervals of equal size for the inte-
gral ∫ 1

0
|sin(2mtx)| dx .
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We consider the error incurred when approximating this integral with the sum
over each interval [(k−1)/m, k/m]. If no cusp occurs in the interval, certainly
the error is at most 1/24m3, so the total error incurred from these intervals
is O(1/m2). If a cusp occurs in an interval, in the worst case it lies at the
midpoint, and the ratio of the error incurred in this case to the error when
the cusp occurs at an endpoint is tan(t/2)/(t − sin t). If π/

√
m ≤ t ≤ π/4,

this ratio is 3m/π2 + O(1), so the total error incurred on the intervals with
cusps is

O

(
3m

π2 · 1

24m3 · m

2

)
= O

(
1

m

)
.

If 0 ≤ t < π/
√

m, then there are at most 2
√

m cusps, and the error in the
worst case at each cusp is (2− cos(π/

√
m))/2π

√
m, so the total error in this

case is also O(1/m). Therefore,

φm = max
0≤t≤π/4

|sin(2mt)|
∫ 1

0
|sin(2mtx)| dx + O

(
1

m

)

≤ sup
α≥0

|sin α|
∫ 1

0
|sin(αt)| dt + O

(
1

m

)

= sup
n≥0

max
0≤x≤π

(2n + 1 − cos x) sin x

nπ + x
+ O

(
1

m

)

= max
0≤x≤π

(1 − cos x) sin x

x
+ O

(
1

m

)

= 0.6639534894 . . . + O

(
1

m

)
.

(3.2)

In the same way,

ψm = max
0≤t≤π/4

|sin(2mt)|
∫ 1

0
|cos(2mtx)| dx + O

(
1

m

)

≤ sup
α≥0

|sin α|
∫ 1

0
|cos(αt)| dt + O

(
1

m

)

= sup
n≥0

max
− π

2 ≤x≤ π
2

(2n + sin x) |sin x|
nπ + x

+ O

(
1

m

)

= max
0≤x≤ π

2

sin2 x

x
+ O

(
1

m

)

= 0.7246113537 . . . + O

(
1

m

)
.

(3.3)

The statement then follows from (3.1), (3.2), and (3.3). �
We remark that Saffari computed the limiting value of θm to be 0.66395 . . .

by considering only the computation of φm above for 0 ≤ t ≤ 2π. However,
this argument breaks down when t is very close to π/2 or 3π/2.
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4. Mahler’s problem

In 1963, Mahler [25] posed the question of maximizing the normalized mea-
sure ‖f‖0 / ‖f‖2 of polynomials with complex coefficients and fixed degree.
He proved that for each degree the maximum is attained by a unimodular
polynomial, and Fielding [14] proved that there exist unimodular polynomi-
als with normalized measure arbitrarily close to 1. Beller and Newman [3]
proved further that there exists a positive constant c such that for each n > 0
there exists a polynomial fn ∈ Un such that ‖fn‖0 >

√
n− c log n. The prob-

lem remains open for Littlewood polynomials; the largest known normalized
measure in this case is 0.98636598 . . ., achieved by the polynomial whose co-
efficients form the Barker sequence of length 13. We prove here that long
Barker sequences would also provide an answer to Mahler’s problem for the
case of Littlewood polynomials.

Theorem 4.1. Let fn be a Littlewood polynomial whose coefficients form a
Barker sequence of length n. Then

‖fn‖0√
n

> 1 − 1√
n

for sufficiently large n.

Proof. Let fn(z) =
∑n−1

j=0 ajz
j , with {aj} a Barker sequence. Since the off-

peak autocorrelation ck is 0 if n ≡ k (mod 2) and ±1 otherwise, it follows
from (1.1) that

‖fn‖4
4 = n2 + n − ε(n) ,

where ε(n) = 0 if n is even and 1 if n is odd. Thus

∫ 1

0

(∣∣fn

(
e(t)

)∣∣2
n

− 1

)2

dt =
‖fn‖4

4

n2 − 1 =
n − ε(n)

n2 .

Next, if a > b > 0 it is straightforward to verify that

a − b

b
≥ log a − log b ,

so setting

a(t) = max

{
1,

∣∣fn

(
e(t)

)∣∣2
n

}
and b(t) = min

{
1,

∣∣fn

(
e(t)

)∣∣2
n

}

for t in [0, 1], we obtain

∫ 1

0

(∣∣fn

(
e(t)

)∣∣2
n

− 1

)2

dt

≥
∫ 1

0
min

{∣∣fn

(
e(t)

)∣∣2
n

, 1

}2 (
2 log

∣∣fn

(
e(t)

)∣∣ − log n
)2

dt ,
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so ∫ 1

0

(
2 log

∣∣fn

(
e(t)

)∣∣ − log n
)2

dt ≤ 1

α2
1n

+ O

(
1

n2

)
,

where α1 = 0.52477 . . . is the constant appearing in statement of Theorem 3.1.
By the Schwarz inequality,∫ 1

0

∣∣2 log
∣∣fn

(
e(t)

)∣∣ − log n
∣∣ dt ≤ 1

α1
√

n
+ O

(
1

n3/2

)
,

and so ∫ 1

0
log

∣∣fn

(
e(t)

)∣∣dt ≥ log
√

n − 1

2α1
√

n
+ O

(
1

n3/2

)
.

Since 1/2α1 = 0.9527 . . ., it follows then that

‖fn‖0√
n

≥ 1 − 1

2α1
√

n
+ O

(
1

n3/2

)
> 1 − 1√

n

for sufficiently large n. �

For each n ≤ 25, Table 2 lists a Littlewood polynomial with degree n − 1
having maximal Mahler’s measure over Ln. We remark that the coefficient
sequences for n = 2, 3, 4, 5, 7, 11, and 13 are precisely the Barker sequences.
(The two Barker sequences of length 4 correspond to polynomials with iden-
tical Mahler’s measure.)

5. Newman’s problem

One may also study flatness properties of polynomials by using the L1 norm.
In this case, again the problem is largely resolved for unimodular polynomials,
and largely open for Littlewood polynomials. For the unimodular case, in
1965 Newman [27] proved that there exists a positive constant c so that for
each n ≥ 2 there exists a polynomial fn ∈ Un such that ‖f‖1 >

√
n − c. In

his proof, Newman first constructed a polynomial fn whose L4 norm satisfies
‖fn‖4 /

√
n = 1 + O(1/

√
n), then used Hölder’s inequality to obtain a lower

bound on ‖fn‖1 of the desired form.
Much less is known for the Littlewood case. In [26], Newman mentioned

a conjecture (without attribution) for the L1 norm for these polynomials,
similar to Erdős’ conjecture for the supremum norm: There exists a positive
constant c < 1 such that ‖f‖1 < c

√
n whenever f ∈ Ln and n ≥ 2. This

problem remains open, as does the weaker question of whether there exists a
positive constant c such that ‖f‖1 <

√
n − c for f ∈ Ln of positive degree.

Resolving a still weaker problem however suffices for answering the question
of the existence of Barker sequences of large degree.

Theorem 5.1. If f(z) =
∑n−1

k=0 ajzj is a Littlewood polynomial whose coeffi-
cients form a Barker sequence of length n, then ‖f‖1 >

√
n − 1.
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Table 2. Maximal Mahler’s measure of Littlewood polynomi-
als by degree.

n Coefficients of f ‖f‖0 ‖f‖0 /
√

n
√

n − ‖f‖0

2 ++ 1.00000 0.70711 0.41421
3 ++- 1.61803 0.93417 0.11402
4 +++- 1.83929 0.91964 0.16071
5 +++-+ 2.15372 0.96317 0.08235
6 ++++-+ 2.22769 0.90945 0.22180
7 +++--+- 2.49670 0.94366 0.14905
8 ++++--+- 2.64209 0.93412 0.18634
9 +++-+--++ 2.72501 0.90834 0.27499

10 ++++-+--++ 2.92076 0.92363 0.24152
11 +++---+--+- 3.16625 0.95466 0.15038
12 +++++--++-+- 3.33463 0.96262 0.12948
13 +++++--++-+-+ 3.55639 0.98637 0.04916
14 ++++++--++-+-+ 3.57536 0.95556 0.16630
15 +++++--++--+-+- 3.74089 0.96589 0.13209
16 +++-+++---+-++-+ 3.77645 0.94411 0.22355
17 ++-++--++++-+-+-- 3.87848 0.94067 0.24463
18 +++-+++---+-++-+-- 4.01406 0.94612 0.22858
19 ++-+---+-++++-++++- 4.16269 0.95499 0.19621
20 +++++-+---+-++---++- 4.30167 0.96188 0.17047
21 ++-------++--+-+-+--+ 4.39853 0.95984 0.18405
22 +++++-++--+-+-++---+++ 4.47518 0.95411 0.21523
23 +++++++---++--+--+-+-+- 4.57183 0.95329 0.22400
24 ++--+++------+-+-+--+--+ 4.71462 0.96237 0.18436
25 +++---+++++++-+-+--+--++- 4.83413 0.96683 0.16587

Proof. Suppose f ∈ Ln has coefficients forming a Barker sequence. From
(1.1) we see that

‖f‖4
4 = n2 + n − ε(n) ,

where ε(n) = 1 if n is odd and 0 if n is even. Using Hölder’s inequality, we
have

‖f‖2
2 < ‖f‖2/3

1 ‖f‖4/3
4 ,

and so

‖f‖2
1 >

n3

n2 + n − ε(n)
= n − 1 +

1

n + 1

(
1 +

ε(n)n2

n2 + n − 1

)
. �

This statement in fact appears in the 1968 paper of Turyn [34], who at-
tributes the observation to Newman.
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Newman in fact proved a statement similar to Theorem 5.1 in 1960 [26],
showing that ‖f‖1 <

√
n − .03 for f ∈ Ln of positive degree. We revisit New-

man’s argument here, choosing parameters in an optimal way and employing
the results of some computations on Littlewood polynomials to obtain an im-
proved lower bound. It is clear from the proof however that a new approach
is needed to obtain the constant 1, as Newman observed.

Theorem 5.2. If f is a Littlewood polynomial of positive degree n − 1, then

‖f‖1 <
√

n − .09 .

Proof. Let f(z) =
∑n−1

k=0 akz
k with ak = ±1 for 0 ≤ k < n, and let α > 1 be a

real number whose value will be selected later. The argument splits into two
cases, depending on the size of ‖f‖∞.

Case 1: ‖f‖∞ ≤ α
√

n. Let ck denote the kth aperiodic autocorrelation of

the sequence of coefficients of f . Since
∑n−1

k=1 c2
k ≥ �n/2	, using (1.1) we have

‖f‖4
4 ≥ n2 + n − ε(n) ,

where ε(n) = 1 if n is odd and 0 otherwise. Next, since

∫ 1

0

(∣∣f(
e(t)

)∣∣2 − n
)2

dt = ‖f‖4
4 − 2n ‖f‖2

2 + n2 ≥ n − ε(n) ,

we compute

∫ 1

0

(∣∣f(
e(t)

)∣∣ −√
n
)2

dt =

∫ 1

0

( ∣∣f(
e(t)

)∣∣2 − n∣∣f(
e(t)

)∣∣ +
√

n

)2

dt ≥ n − ε(n)

(α + 1)2n
.

However, ∫ 1

0

(∣∣f(
e(t)

)∣∣ −√
n
)2

dt = 2n − 2
√

n ‖f‖1 ,

so

‖f‖2
1 ≤ n − n − ε(n)

(α + 1)2n
+

(n − ε(n))2

4(α + 1)4n3

= n − 1

(α + 1)2 + O(1/n) .

(5.1)

Case 2: ‖f‖∞ > α
√

n. Suppose max|z|=1 |f(z)| = A
√

n, occurring at z =
e(t0). By Bernstein’s inequality, |f ′(z)| ≤ A(n − 1)

√
n, so for 0 ≤ t ≤ 1, it

follows that ∣∣f(
e(t)

)∣∣ ≥ A
√

n
(
1 − 2π(n − 1) |t − t0|

)
.
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Let β be a small positive number whose value will be selected later, let I
denote the interval [t0 − β/n, t0 + β/n], and let B =

∫
I
|f(e(t))|2 dt. Then

B ≥ 2α2n

∫ t0+β/n

t0

(
1 − 2π(n − 1)(t − t0)

)2
dt

= 2α2β

(
1 − 2πβ

(
1 − 1

n

)
+

4π2β2

3

(
1 − 1

n

)2
)

.

(5.2)

It follows that
B ≥ 2α2β

(
1 − 2πβ + 4π2β2/3

)
(5.3)

if β < 3/4π.
Next, let J denote the complement of I (modulo 1) in [0, 1] so that∫

J

∣∣f(
e(t)

)∣∣2 dt = n − B .

By the Schwarz inequality,(∫
I

∣∣f(
e(t)

)∣∣ dt

)2

≤ 2βB/n

and (∫
J

∣∣f(
e(t)

)∣∣ dt

)2

≤ (n − B)(1 − 2β/n) ,

so
‖f‖1 ≤

√
2βB/n +

√
(n − B)(1 − 2β/n) . (5.4)

The expression on the right is decreasing in B for B ≥ 2β, so assuming that
α2(1− 2πβ + 4π2β2/3) ≥ 1, we may replace B in (5.4) with the expression in
(5.3) to obtain

‖f‖2
1 ≤

(
2αβ

√
(1 − 2πβ + 4π2β2/3)/n

+
√

(n − 2α2β(1 − 2πβ + 4π2β2/3))(1 − 2β/n)

)2

= n − 2β
(
1 + α2 − 2α2βπ + 4α2β2π2/3 − 2α

√
1 − 2βπ + 4β2π2/3

)
+ O(1/n) .

(5.5)

Selecting parameters. Now we wish to choose α and β, subject to the
identified constraints, so that the constant terms in the expressions (5.1) and
(5.5) match and are as large as possible. (Newman uses α = 2

√
π ≈ 3.54,

β = 1/4π ≈ .0796, and B ≥ 1, which yields .0484 in case 1 and .361 in
case 2.) Selecting candidate values for β between 0 and 3/4π produces the
values of 1/(α + 1)2 shown in Figure 1. The optimal value is approximately
.092347, occurring near α = 2.2907 and β = .064804.
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Figure 1. Optimal constant term.
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When n is even, we obtain from (5.1) that ‖f‖2
1 ≤ n − .091281, and it is

straightforward to verify that the bound in (5.5) is slightly smaller for all n.
However, for odd n ≥ 3 we obtain from (5.1) that ‖f‖2

1 ≤ n − .09 only for
n ≥ 41. To obtain the inequality for all odd n, we first perform the analysis
a bit more carefully to decrease this threshold, then we complete the proof
by determining for small n the maximal value of the L1 norm of a Littlewood
polynomial of degree n−1. To this end, we replace the parameter α with the
expression α− γ/n and use the more precise lower bound from (5.2) for B in
(5.4) in place of the bound (5.3). Choosing γ = .899634 to balance the 1/n
terms in the respective asymptotic expansions, we verify that both (5.1) and
(5.4) yield ‖f‖2

1 < n − .09 when n is odd for n ≥ 21.
To complete the proof, we therefore need only check that every Littlewood

polynomial with even degree n − 1 ≤ 18 satisfies ‖f‖1 <
√

n − .09. This is
established in Table 3, which displays for each n ≤ 25 a Littlewood polynomial
of degree n − 1 having maximal L1 norm. �

We remark that the last column of the table shows that the value of .09
in Theorem 5.2 cannot in general be replaced with any number larger than
.1856 . . . . We also note that the extremal polynomials with respect to the L1

norm in Table 3 are precisely the same as the extremal Littlewood polynomials
with respect to Mahler’s measure in Table 2. In particular, the coefficient
sequences appearing in Table 3 for n = 2, 3, 4, 5, 7, 11, and 13 are Barker
sequences. Again, the other Barker sequence of length 4 has the same L1

norm as that of the n = 4 entry in the table.

6. An irreducibility question

As we noted in Section 2, Turyn and Storer [35] proved that no Barker
sequences of odd length n exist for n > 13. Their proof is elementary, though
somewhat complicated, and relies on showing that long Barker sequences of
odd length must exhibit certain patterns. We describe here a possible alter-
native route to proving this result, in the hope of spurring further research.
The material in this section also appears in [7].
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Table 3. Maximal L1 norms of Littlewood polynomials by degree.

n Coefficients of f ‖f‖1 ‖f‖1 /
√

n n − ‖f‖2
1

2 ++ 1.27324 0.90032 0.37886
3 ++- 1.67761 0.96857 0.18562
4 +++- 1.92555 0.96277 0.29227
5 +++-+ 2.19412 0.98124 0.18583
6 ++++-+ 2.33899 0.95489 0.52912
7 +++--+- 2.58397 0.97665 0.32311
8 ++++--+- 2.73681 0.96761 0.50989
9 +++-+--++ 2.87385 0.95795 0.74097

10 ++++-+--++ 3.04989 0.96446 0.69817
11 +++---+--+- 3.25835 0.98243 0.38317
12 +++++--++-+- 3.40074 0.98171 0.43498
13 +++++--++-+-+ 3.57946 0.99276 0.18749
14 ++++++--++-+-+ 3.65775 0.97757 0.62088
15 +++++--++--+-+- 3.80732 0.98305 0.50430
16 +++-+++---+-++-+ 3.89389 0.97347 0.83764
17 ++-++--++++-+-+-- 4.00380 0.97106 0.96956
18 +++-+++---+-++-+-- 4.13097 0.97368 0.93505
19 ++-+---+-++++-++++- 4.26105 0.97755 0.84344
20 +++++-+---+-++---++- 4.39129 0.98192 0.71659
21 ++-------++--+-+-+--+ 4.50012 0.98201 0.74893
22 +++++-++--+-+-++---+++ 4.58809 0.97818 0.94943
23 +++++++---++--+--+-+-+- 4.68409 0.97670 1.05934
24 ++--+++------+-+-+--+--+ 4.81295 0.98244 0.83550
25 +++---+++++++-+-+--+--++- 4.92189 0.98438 0.77497

For a polynomial f(x), we define its reciprocal polynomial f ∗(x) by f ∗(x) :=
xdeg ff(1/x). For f(x) ∈ Z[x], we say f is reciprocal if f = ±f∗.

Theorem 6.1. If the polynomial

gm(x) :=
m∑

k=1

(
x2m−2k + x2m+2k

)
+ (−1)m(2m + 1)x2m

is irreducible, then no Barker sequence of length 2m + 1 exists.

Proof. Suppose {ak} is a Barker sequence of length 2m + 1, and let fm(x) =∑2m
k=0 akx

k. By Theorem 2.1, the aperiodic autocorrelation ck is 0 if k is odd
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and (−1)m if k �= 0 and k is even. Thus

fm(x)f∗
m(x) =

m∑
k=−m

c2kx
2k+2m

= (2m + 1)x2m +

m∑
k=1

(−1)m
(
x2m+2k + x2m−2k

)
,

and so gm(x) = (−1)mfm(x)f∗
m(x). �

The polynomials gm(x) are in fact irreducible for 6 < m ≤ 900, and it
would be interesting if there is a short proof of this for large m. We note
however that Erich Kaltofen has observed that the polynomials gm(x) are in
fact always reducible mod p, for any prime p. With his permission, we include
his proof of the following more general statement.

Theorem 6.2. Suppose f(x) is an even, reciprocal polynomial with integer
coefficients and deg(f) ≥ 4. Then f(x) is reducible mod p for every prime p.

Proof. If f = −f ∗ then f(±1) = 0 so f is reducible over Q. If f = f∗

and deg(f) = 4n + 2 then f(±i) = 0, so again f is reducible over Q for
n ≥ 1. Suppose then that f = f∗ and deg(f) = 4n with n ≥ 1, and write
f(x) = g(x2). Clearly f(x) ≡ g(x)2 (mod 2), so suppose p is an odd prime,
and g(x) is irreducible mod p. Let α be a root of g in its splitting field Fp2n

over Fp, so that

g(x) =
2n−1∏
k=0

(
x − αpk

)
.

Let γ be a primitive element of Fp2n , and let α = γt for some integer t.

Since g is reciprocal, α−1 is also a root of g, so α−1 = γ−t = αpj
= γtpj

for
some positive integer j < 2n. Then γtp2j

= γ−tpj
= γt, so αp2j−1 = 1, and

consequently j = n. Therefore γt(pn +1) = 1, so (pn − 1) | t and thus t is even.
Let β = γt/2. Then

f(x) =

2n−1∏
k=0

(
x + βpk

)
·

2n−1∏
k=0

(
x − βpk

)
,

and each of these products lies in Fp[x]. �
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THE HANSEN-MULLEN PRIMITIVITY CONJECTURE:

COMPLETION OF PROOF

STEPHEN D. COHEN AND MATEJA PREŠERN

Abstract. This paper completes an efficient proof of the Hansen-Mullen

Primitivity Conjecture (HMPC) when n = 5, 6, 7 or 8. The HMPC (1992)

asserts that, with some (mostly obvious) exceptions, there exists a prim-

itive polynomial of degree n over any finite field with any coefficient ar-

bitrarily prescribed. This has recently been proved whenever n ≥ 9 or

n ≤ 4. We show that there exists a primitive polynomial of any degree

n ≥ 5 over any finite field with third coefficient, i.e., the coefficient of

xn−3, arbitrarily prescribed. This completes the HMPC when n = 5 or

6. For n ≥ 7 we prove a stronger result, namely that the primitive poly-

nomial may also have its constant term prescribed. This implies further

cases of the HMPC and completes the HMPC when n = 7. We also show

that there exists a primitive polynomial of degree n ≥ 8 over any finite

field with the coefficient of xn−4 arbitrarily prescribed, and this completes

the HMPC when n = 8. A feature of the method, when the cardinality

of the field is 2 or 3, is that 2-adic and 3-adic analysis is required for the

proofs. The article is intended to provide the reader with an overview of

the general approach to the solution of the HMPC without the weight of

detail involved in unravelling the situation of arbitrary degree.

1. Introduction

For q a power of a prime p, let Fq be the finite field of order q. Its mul-
tiplicative group F∗

q is cyclic of order q − 1 and a generator of F∗
q is called a

primitive element of Fq. More generally, a primitive element γ of Fqn , the
unique extension of degree n of Fq, is the root of a (necessarily monic and au-
tomatically irreducible) primitive polynomial f(x) ∈ Fq[x] of degree n. Any

root of f is a primitive element of Fqn and so are its conjugates γq
, . . . , γ

qn−1

.
In 1992, T. Hansen and G.L. Mullen [16] stated a conjecture on the existence
of a primitive polynomial of degree n over Fq with an arbitrary coefficient
prescribed. (See also [22] and [23].)

Conjecture 1.1 (Hansen and Mullen, 1992). Let a ∈ Fq and let n ≥ 2 be

a positive integer. Fix an integer m with 0 < m < n. Then there exists

a primitive polynomial f(x) = x
n +

∑n

j=1
ajx

n−j of degree n over Fq with

2000 Mathematics Subject Classification. 11T06, 11T30, 11T24, 11L40, 11S85.

Key words and phrases. primitive polynomial, finite field, prescribed coefficient, Hansen-

Mullen conjecture.
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am = a with (genuine) exceptions when

(q, n,m, a) = (q, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0) or (2, 4, 2, 1).

We shall refer to Conjecture 1.1 as the Hansen-Mullen Primitivity Conjec-
ture (HMPC). Substantial progress has already been made towards a complete
proof of the HMPC. We outline some of these steps. (For a fuller bibliogra-
phy consult Cohen’s survey of the last decade’s activity, [5].) When m = 1, it
was demonstrated by Cohen, [1]. (See [9] for a self-contained exposition.) For
n = m−1, it follows from [2], [6], [17]. The papers of Han [15] and Cohen and
Mills [8] cover most cases with m = 2 and n ≥ 5 (although the situation when
q is even and n = 5 or 6 is not altogether clear). For m = 3, the conjecture
holds provided n ≥ 7 by [13], [14], [21] and [7]. As remarked previously in
[10], however, when m = 2 or 3, significant computer verification in a large
number of cases was necessary to resolve these questions, particularly when
5 ≤ n ≤ 7. Next, the HMPC follows from [3] whenever m ≤ n

3
(except that

for q = 2 the restriction is to m ≤ n
4
). For even prime powers q and odd

degrees n it was shown by Fan and Han [12] provided n ≥ 7. Recently, the
HMPC has been established when m = 2 or, provided n ≥ 6, when m = n−2
[10]. Finally, the whole conjecture has been established by Cohen whenever
n ≥ 9, [4].

To resolve the HMPC for particular values of n and m, it is evidently more
delicate when n is small and, less evidently perhaps, when m is around n

2
(see

[4]). From the above summary, the outstanding cases all have 5 ≤ n ≤ 8.
In particular, the existence of a primitive quintic (n = 5), a primitive sextic
(n = 6) and a primitive septic (n = 7) with the coefficient of x3 prescribed
(m = 3), as well as the existence of a primitive octic (n = 8) with the
coefficient of x4 prescribed (m = 4) has not been settled.

In this paper, we prove existence in all of the remaining cases of the HMPC
listed above. In particular, with regard to m = 3 or 4, we give a self-contained
proof of the following Theorems 1.2 and 1.4 with a minimal amount of com-
putation.

Theorem 1.2. Suppose n ≥ 5. Let a be an arbitrary member of the finite

field Fq. Then there exists a primitive polynomial f(x) ∈ Fq[x] of degree n

with third coefficient prescribed as a.

Note that when n = 5 and a = 0 the conclusion of Theorem 1.2 is a
consequence of Theorem 1.2 in [10]. A (difficult) case of the HMPC is an
immediate consequence of Theorem 1.2.

Corollary 1.3. Suppose 5 ≤ n ≤ 6. Then the HMPC holds.

Theorem 1.4. Suppose n ≥ 8. Let a be an arbitrary member of the finite

field Fq. Then there exists a primitive polynomial f(x) ∈ Fq[x] of degree n

with fourth coefficient prescribed as a.

Corollary 1.5. Suppose n = 8 and m = 4. Then the HMPC holds.
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Moreover, when the degree n ≥ 7, we prove a stronger version of Theo-
rem 1.2 wherein additionally the constant term of the primitive polynomial
is appropriately prescribed as (−1)n

c ∈ Fq. Here, necessarily c must be a
primitive element of Fq, since this is the norm of a root of the polynomial.

Theorem 1.6. Suppose n ≥ 7. Let a be an arbitrary non-zero member of

the finite field Fq and c be an arbitrary primitive element of Fq. Then, there

exists a primitive polynomial f(x) ∈ Fq[x] of degree n with third coefficient a

and constant term (−1)n
c.

In view of the fact that a monic polynomial f(x) ∈ Fq[x] of degree n with
constant term (−1)n

c is primitive if and only if the reciprocal polynomial
xn

(−1)nc
· f
(

1

x

)

is primitive, Theorem 1.2 (for a = 0) and Theorem 1.6 (for

a 6= 0) imply further cases of the HMPC.

Corollary 1.7. Suppose n ≥ 7 and a ∈ Fq. Then there exists a primitive

polynomial of degree n over Fq with its coefficient of x3 equal to a. In partic-

ular, the HMPC is established for (n,m) = (7, 4) and (8, 5).

Corollary 1.8. Suppose 7 ≤ n ≤ 8. Then the HMPC holds.

Generally, for the numerical aspects we can suppose 5 ≤ n ≤ 8, though
the calculations could easily be extended to larger values of the degree. (Of
course, the working becomes easier as n increases).

In the proofs of Theorems 1.2, and 1.6 we will separately approach fields
of orders ≡ 0 (mod 3) (the ternary problem) and orders 6≡ 0 (mod 3). We
shall refer to this as the non-ternary problem. This is because, when q ≡
0 (mod 3), the criterion for prescribing the third coefficient has a different
shape and 3-adic analysis is employed. (Recall that in [10], for prescribed
second coefficient, 2-adic analysis was involved.)

Granted Theorem 1.6, for a 6= 0 we need only consider n = 5 or 6 in
Theorem 1.2. When n = 5 in Theorem 1.2 and n = 7, 8 in Theorem 1.6, we
only need give the proof for when a 6= 0 (the non-zero problem), but when
n = 6, we shall distinguish two cases according to whether a 6= 0 or a = 0
(the zero problem). In particular, in the non-zero problem, when n = 7, 8 we
also treat the case when the constant term is prescribed.

In the proof of Theorem 1.4, we have to treat fields of even and odd or-
ders separately. Here in numerical work it suffices to take n = 8. When
q ≡ 0 (mod 2) and 2-adic analysis is brought in, we will speak of the even

problem and refer to everything else as the odd problem. In both problems we
distinguish between the zero problem, when the prescribed coefficient is zero,
and the non-zero problem (otherwise).

In every case careful work on expressing the number of desired primitive
polynomials in terms of character sum expressions is required, as well as a
sieving technique. However, in most cases for a number of values of q examples
had to be found directly using the computer algebra package Maple. Full
details will be given in [24].
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2. Basic notation with applications

In order to render this account as self-contained as possible, we reproduce
some basic material from [10].

Throughout take Qn = qn−1

q−1
and, for any integer r, denote by θ(r) the ratio

φ(r)

r
, φ being Euler’s function.

Observe that a primitive element of Fqn is not a d-th power in Fqn for any
divisor d of qn − 1 exceeding 1. More generally, for any divisor k of qn − 1,
call a (non-zero) element of Fqn k-free if it is not a d-th power in Fqn for any
divisor d of k exceeding 1.

Given a ∈ Fq, for a divisor k of qn − 1 denote (temporarily) by πa(k)
the number of k-free elements of Fn

q whose characteistic polynomial over Fq

has specified coefficient a (here third or fourth). It is required to show that
πa(q

n − 1) is positive. In particular, in the zero problem (a = 0), the number
is π0(q

n − 1). Evidently, from the definition of k-free, the value of πa(k)
depends only on the square-free part of k, that is, the product of all distinct
primes dividing k. Accordingly, we replace k by its square-free part, whenever
appropriate.

Lemma 2.1. Suppose that an (irreducible) polynomial f(x) ∈ Fq[x] of degree

n has specified coefficient 0 and a root γ ∈ Fqn that is Qn-free. Then there

exists b ∈ F∗
q, such that the minimal polynomial of γ∗ := bγ is primitive of

degree n and also has specified coefficient 0.

Proof. Since γ is Qn-free, for a fixed primitive element ξ ∈ Fqn, γ = ξ
e, where

gcd(e, Qn) = 1. Set b = ξ
jQn (automatically in Fq) for some j to be chosen.

Then, for any choice of j, γ∗ := bγ remains Qn-free. Write q − 1 = q1q2,
where q1 and q2 are co-prime with q1 the largest factor of q − 1 co-prime to
Qn. Thus, for any b, bγ = γ

∗ is already q2-free. It is additionally q1-free
(and so primitive) if j is chosen so that e+ jQn ≡ 1 (mod q1). This is always
possible. The result follows. �

Consequently, from Lemma 2.1, in the zero problem in order to establish
that π0(q

n − 1) is positive, it suffices to show that π0(Qn) is positive.
For Theorem 1.6 (wherein the constant term is also prescribed), introduce

En, defined as the product of distinct primes in qn − 1 that are not factors of
q − 1. In particular, En is an odd divisor of Qn. Further, for a (6= 0) ∈ Fq,
c primitive in Fq and k|(qn − 1), define πa,c(k) to be the number of k-free
γ ∈ Fqn whose characteristic polynomial has third coefficient a and constant
term (−1)n

c. We want to show that when n ≥ 6, then πa,c(q
n −1) is positive.

Lemma 2.2. Suppose that f(x) ∈ Fq[x] is an irreducible polynomial of degree

n with constant term (−1)n
c, where c is a primitive element of Fq. Then f

is primitive if and only if any root γ ∈ Fqn is En-free.
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Proof. Since γ
q
n
−1

q−1 = c is a primitive element of Fq, γ is guaranteed to be
(q − 1)-free. To be primitive (in Fqn) it therefore suffices for γ to be En-
free. �

By Lemma 2.2, it suffices to show that πa,c(En) is positive.
The next items of notation relate to the characteristic function of the set

of (non-zero) k-free elements of Fqn . For any d|(qn − 1), write ηd for a typical

(multiplicative) character in ̂Fqn

∗
of order d. Then ηd is extended to a function

on Fqn by setting ηd(0) = 0 (even when d = 1). Thus η1 is the trivial character.
We shall however write η = 1 for the version of the trivial character for which
η(0) = 1. As in other papers, adopt an ‘integral’ notation for weighted sums;
namely, for k|(qn − 1), set

∫

d|k

ηd :=
∑

d|k

µ(d)

φ(d)

∑

(d)

ηd ,

where the inner sum runs over all φ(d) characters of order d. (Once again, only
square-free divisors d have any influence.) Then the characteristic function
for the subset of k-free elements of Fqn is

θ(k)

∫

d|k

ηd(γ) , γ ∈ Fqn , (2.1)

with θ(k) as above.

The next batch of notation relates to the sieving technique. Given k (taken
to be square-free), write k = k0p1 · · · ps, s ≥ 1, for some divisor k0 and distinct
primes p1, . . . , ps. Then (k0, s) is called a decomposition of k. To such a
decomposition we associate a number

δ := 1 −
s
∑

i=1

1

pi

, (2.2)

which is of special significance. To be useful it is essential that k0 is selected
so that δ is positive: it will always be assumed that this is so.

From here on, we write π(k) for πa(k) whenever a 6= 0.

Lemma 2.3. For any divisor d of qn − 1, let π(k) denote the number of k-

free elements of Fqn satisfying prescribed conditions. Suppose that (k0, s) is a

decomposition of k. Then

π(k) ≥
(

s
∑

i=1

π(k0pi)

)

− (s− 1)π(k0) (2.3)

= δπ(k0) +

s
∑

i=1

(

π(k0pi) −
(

1 − 1

pi

)

π(k0)

)

. (2.4)
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Proof. The results are trivial for s = 1. The basic sieving inequality (2.3)
holds by induction on s ≥ 2. When s = 2, S(k0) ⊆ S(k0p1) ∪ S(k0p2),
where S(k) denotes the set of elements counted by π(k).

The expression (2.4) is a useful rearrangement of the right side of (2.3). �

In brief, for a given k (such as qn − 1), one starts out by estimating π(k)
directly (i.e., take s = 1 in the above) for sufficiently large q. For smaller
values of q, genuine applications of the sieve (s > 1) become crucial.

For any positive integer r, denote by W (r) = 2ω(r) the number of square-
free divisors of r, where ω(r) is the number of distinct prime divisors of r.
For a given decomposition (k0, s) define

∆s,δ :=
s− 1

δ
+ 2.

When s = 1, then ∆s,δ = 2 and W (k) = 2W (k0).

3. Prescribing the third coefficient

3.1. The non-ternary problem. Throughout this section we will only con-
sider fields with characteristic not 3. First we recall a standard general fact.

Lemma 3.1 (Newton’s formula). For a field F , let f(x) ∈ F [x] be a separable

monic irreducible polynomial in F [x] with a root γ ∈ E, say. For 1 ≤ t ≤ m,

denote by st the E/F -trace of γt. Then the m-th symmetric function σm of

the roots of f satisfies

(−1)m−1
mσm = sm − sm−1σ1 + sm−2σ2 + · · · + (−1)m−1

s1σm−1 . (3.1)

As it stands when m = 3, Lemma 3.1 is useful only when the characteristic
of F is not 3. Suppose now that q 6≡ 0 (mod 3) and that a ∈ Fq is given.

From (3.1), considering that 2σ2 = s
2

1
− s2 and σ1 = s1, we have

6σ3 = s
3

1
− 3s1s2 + 2s3 .

As we want to assign the value a to the third coefficient, we put σ3 = −a.
Set s1 = 0. Then we have to put s3 = −3a. The characteristic function for
the set of elements γ ∈ Fqn for which s1 = 0 and s3 = −3a is

1

q2

∑

α,β∈Fq

χn(αγ3 + βγ)χ(−3αa).

Here χ is the canonical additive character on Fq (so that

χ(b) = exp

(

2πiTu(b)

p

)

,

where q = p
u) and χn is the canonical character on Fqn. Also χ̄ is the complex

conjugate character to χ.
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Therefore, for k|qn − 1, redefining πa(k) to refer specifically to the number
of primitive polynomials with s1 = 0, s3 = −a, we obtain

q
2
πa(k)

θ(k)
=

∫

d|k

∑

α,β∈Fq

χ̄(αa)Sn(α, β; ηd), (3.2)

where Sn(α, β; η) =
∑

γ∈Fqn

χn(αγ3 + βγ)η(γ) and, for simplicity, 3a has been

replaced by a .
More generally, suppose that (k0, s) is a decomposition of k. Then, by the

equivalence of (2.3) and (2.4),

q
2
πa(k)

θ(k)
= δ

∫

d|k0

∑

α,β∈Fq

χ̄(αa)Sn(α, β; ηd)

+

s
∑

i=1

(

1 − 1

pi

)
∫

d|k0

∑

α,β∈Fq

χ̄(αa)Sn(α, β; ηdpi
). (3.3)

For (3.2) use the equivalence of the right sides of (2.3) and (2.4).
Of course, (3.2) is recovered from (3.3) by setting s = 1.
Estimates for Sn(α, β; ηd) are standard as now described.

Lemma 3.2. Suppose α, β ∈ Fq, not both 0.
If α = 0, then Sn(0, β; 1) = 0; otherwise

∣

∣Sn(α, β; 1)
∣

∣ ≤ q
n

2 .

Suppose d|qn − 1 with d > 1. Then

∣

∣Sn(α, β; ηd)
∣

∣ ≤







3q
n

2 , if α 6= 0,

q
n

2 , if α = 0.

Define S1(κβ
T
, η) :=

∑

β∈Fq

χ(κβT )η(β). The following lemma gives the bounds

for S1(κβ
T
, η). It is a version of Lemma 9.5 in [4].

Lemma 3.3. Suppose p - T and T
′ := gcd(m, q − 1). Assume that κ ∈ F∗

q

and η ∈ ̂F∗
q. Then

∣

∣S1(κβ
T
, η) + 1

∣

∣ ≤ (T ′ − 1)q
1

2 if η is trivial,
∣

∣S1(κβ
T
, η)
∣

∣ ≤ T
′
q

1

2 otherwise.

Proof. For any ν ∈ ̂F∗
q, define the Gaussian sum G(ν) :=

∑

z∈Fq
ψ(z)ν(z). As

usual, G(ν) = −1 if ν is trivial and, otherwise, |G(ν)| =
√
q. Now let ν be a

generator of ̂F∗
q, so that ν has order q − 1. Then χ̂ = ν

i for some i ≤ q − 2:
i = 0 if χ̂ is trivial.
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Moreover, for y ∈ Fq,

ψ(κy) =
1

q − 1

q−2
∑

j=0

G(ν̄j) νj(κy).

Hence,

S1(κx
T
, χ̂) =

1

q − 1

q−2
∑

j=0

G(ν̄j)
∑

c∈Fq

ν
j(κcT )νi(c)

=
1

q − 1





q−2
∑

j=1

G(ν̄j)νj(κ)
∑

c∈Fq

ν
jT+i(c) −

∑

c∈Fq

ν
i(c)



 .

Now,
∑

c∈Fq
ν

jT+i(c) = 0 unless νjT+i is trivial (in which case the sum is

q − 1). The latter occurs precisely when jT + i ≡ 0 (mod q − 1). For this,
necessarily T ′|i, in which case there are T ′ solutions j (mod q − 1).

When i = 0, there are T ′−1 such solutions j with 1 ≤ j ≤ q−2; otherwise
there are T ′ solutions. �

Lemma 3.4. Suppose that p 6= 3 and that a ∈ Fq is non-zero and k|Pn,3 :=
qn−1

gcd(3,q−1)
. Suppose also that k = k0p1 · · · ps, s ≥ 1, p1, . . . , ps prime, with δ

positive. Then πa(k) is positive whenever

q
n−3

2 >







9W (k0)∆s,δ, when q ≡ 1 (mod 3);

3W (k0)∆s,δ, when q ≡ 2 (mod 3).
(3.4)

Specifically, when s = 1 and k = Pn,3, the sufficient condition is

q
n−3

2 >







9W (qn − 1), when q ≡ 1 (mod 3);

3W (qn − 1), when q ≡ 2 (mod 3).
(3.5)

Proof. In (3.3), aggregate the contributions to the right side relating to a spe-
cific multiplicative character ηd or ηdpi

(without the weighting factor implicit
in the integral notation). Suppose d|k0 and take ηd: similar reasoning applies
to each ηdpi

. The contribution to the right-hand side of (3.3) attributable to
values of α = β = 0 is δ(qn − 1), as Sn(0, 0; ηd) = 0 unless d = 1. This yields
the main term. It remains to show that for each character ηd for any d|k
(with d > 1) the sum of terms with α, β not both zero is bounded absolutely

by 9δq
n+3

2 when q ≡ 1 (mod 3) and by 3δq
n+3

2 when q ≡ 2 (mod 3).

Suppose d - Qn. Then the restriction η̃d (of ηd ∈ ̂Fqn to ̂Fq) is nontrivial.

For the terms with β 6= 0, we can replace α by αβ
3 and γ by γ

β
to yield

∑

α∈Fq
S̄1(αa; η̃d)Sn(α, 1, ηd), where S1(x, η̃) =

∑

β∈Fq
χ(xβ)η̃(β). Because

q - Qn, when α = 0, then S1(αa; η̃d) = 0. On the other hand, when α 6= 0,

then, as usual,
∣

∣Sn(α, 1, ηd)
∣

∣ ≤ 3q
n

2 , whereas
∣

∣S1(αa; η̃d)
∣

∣ ≤ m
′
q

1

2 by Lemma
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3.3. So the total contribution from terms with β 6= 0 is bounded absolutely by

9δ(q− 1)q
n+1

2 when q ≡ 1 (mod 3) and by 3δ(q− 1)q
n+1

2 when q ≡ 2 (mod 3).
For the remaining contribution in this case, consider terms with β = 0 (and

hence α 6= 0):
∑

α∈Fq
χ(−αa)Sn(α, 0; ηd). Here, if 3 - (q− 1), replace α by α3

and γ by γ

α
to obtain S̄1(a, η̃d)Sn(1, 0; ηd). Again |Sn| ≤ 3q

n

2 and |S1| ≤ q
1

2

so that the total contribution is 3δq
n+1

2 . On the other hand, if 3|q − 1, one
has to split Sn into three sums (each with weight 1

3
) by replacing α by g

i
α

3

(i = 0, 1, 2) and γ by γ

α
for a fixed non-cube in Fq. Each S3 is bounded as

before whereas, now |S1| ≤ 3q
1

2 . Now the total contribution is bounded by

9δq
n+1

2 .
Thus, adding the contributions we obtain the required absolute bound

3δ gcd(3, q − 1)q
n+3

2 .
Suppose d|Qn. Now η̃d is trivial. For the terms with β 6= 0 proceed as

before. This time, provided α 6= 0, we can conclude that
∣

∣S1(αa; η̃d)
∣

∣ ≤
(

gcd(3, q − 1) − 1
)

q
1

2 + 1. On the other hand, when α = 0, we can only use

the trivial bound |S1| ≤ (q−1), though
∣

∣Sn(0, 1; ηd)
∣

∣ ≤ q
n

2 in this case. Hence
for these terms (with β 6= 0) we have a total absolute bound of

3δ(q − 1)
(

(gcd(3, q − 1) − 1)q
1

2 + 1
)

q
n

2 + δ(q − 1)q
n

2

= 3δ(q − 1)q
n

2

(

(gcd(3, q − 1) − 1)q
1

2 + 4

3

)

≤ 3δ gcd(3, q − 1)(q − 1)q
n+1

2 .

The contribution from terms with β = 0 (and so α 6= 0) is certainly

bounded by 3δ gcd(3, q − 1)q
n+1

2 as before. Indeed, the factor gcd(3, q− 1)q
1

2

could be reduced to
(

gcd(3, q − 1) − 1
)

q
1

2 + 1.
The remaining terms on the right side of (3.3) (involving characters like

ηdpi
) are estimated in the same way: we have used no special properties for

d|k0. Taking into account that there are φ(d) characters of order d for each
divisor d we deduce that numerically the right side of (3.3) exceeds

δ

(

q
n − 3 gcd(3, q − 1)q

n+3

2 ∆s,δ

)

,

with ∆s,δ as in Section 2, since
s
∑

i=1

(

1 − 1

pi

)

= s− 1 + δ.

�

To prescribe additionally the constant term of the polynomial, we use the
condition of the following lemma.

Lemma 3.5. Suppose that a ∈ Fq is non-zero, c is a primitive element of

Fq and k|En. Suppose also k = k0p1 · · · ps, s ≥ 1, p1, . . . , ps prime, with δ
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positive. Then πa,c(k) is positive whenever

q
n−5

2 >







9W (k0)∆s,δ, when q ≡ 1 (mod 3) ;

3W (k0)∆s,δ, when q ≡ 2 (mod 3) .
(3.6)

Specifically, when s = 1, W (k0)∆s,δ is replaced by W (En) in (3.6).
In particular, the norm case of the HM-problem is solved whenever (3.6)

holds with k = En.

Proof. The characteristic function for the subset of F∗
qn comprising elements

with Fq-norm c (i.e. Nn(γ) = c) is
1

q − 1

∑

ν∈dF∗

qn

ν(Nn(γ)c−1)
(

̂F∗
qn being the

group of multiplicative characters of F∗
qn

)

. Redefining πa,c to refer to the
number of primitive polynomials with s1 = 0, s3 = −a, we obtain the follow-

ing modification of the condition (3.3), where ν̂ denotes the lift of ν to ̂F∗
qn

(so that ν̂(γ) = ν(Nn(γ))):

(q − 1)q2
πa,c(k)

θ(k)
= δ

∫

d|k0

∑

α,β∈Fq

∑

ν∈dF∗

qn

ν̄(c)χ̄(3αa)Sn(α, β; ηdν̂)

(3.7)

+

s
∑

i=1

(

1 − 1

pi

)
∫

d|k0

∑

α,β∈Fq

∑

ν∈dF∗

qn

ν̄(c)χ̄(3αa)Sn(α, β; ηdpi
ν̂).

The result is then obtained by the same methods as (3.4). �

We will distinguish between the cases of q ≡ 1 or 2 (mod 3) for smaller
values of q, when this gives us a useful saving. In general, however, we will
use only the condition for q ≡ 1 (mod 3), which applies to all cases.

3.1.1. Quintics. To assist in the application of Lemma 3.4 we employ some
auxiliary results. The first is an easy fact that was also quoted as Lemma 4.2
in [9].

Lemma 3.6. Suppose n and l are odd primes such that l|Qn = qn−1

q−1
. Then

either l = n or l ∈ L2n (with l - (q − 1)). Here L2n denotes the set of primes

congruent to 1 (mod 2n).

Remark. We will use l to denote a prime number throughout.

Throughout we use some explicit bounds for the number of square-free
divisors of an integer h.

Here is an example to illustrate how to obtain such a bound. Let h be
a positive integer, such that ω(h) ≥ 13. Then the number of square-free
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divisors of h is bounded by W (h) < h
3

11 . This holds because l
3

11 > 2 when
l ≥ 41 (the 13-th prime) and so, by calculation,

2ω(h)

h
3

11

≤
∏

l|h

2

l
3

11

≤
∏

l≤41

2

l
3

11

< 1.

Other bounds we use are obtained analogously.
Express the product of distinct primes in q

5 − 1 as K1 ·K2, where K1 (a
factor of q − 1) is the product of all distinct prime divisors of q − 1 and K2

(a factor of Q5) is the product of distinct prime divisors of Q5 that do not
divide q−1. Observe that 5|(q−1) if and only if 5|Q5 and therefore all prime
divisors of K2 are ≡ 1 (mod 10). Denote ω(K1) by ω1 and ω(K2) by ω2.

Lemma 3.7. Suppose that n = 5, ω1 ≥ 13 or ω2 ≥ 26. Let a (6= 0) ∈ Fq.

Then there exists a primitive polynomial of degree 5 over Fq with the coefficient

of x2 prescribed as a.

Proof. First suppose ω1 ≥ 13 and ω2 ≥ 26. The number of square-free divisors
of h, an integer with ω(h) ≥ 13, is bounded by W (h) < h

3

11 . Therefore

W (K1) < (q − 1)
3

11 < q
3

11 . Also, when integer h is a product of primes

l ≡ 1 (mod 10) and ω(h) ≥ 26, then W (h) < h
13

99 . That yields W (K2) <

(Q5)
13

99 < (q5)
13

99 = q
65

99 . It follows that W (q5 − 1) < q
92

99 . Consequently, by

(3.5), to show existence it suffices that q > 9q
92

99 , i.e., q ≥ 9
99

7 ≈ 3.131 · 1013,
which holds as ω1 ≥ 13 and ω2 ≥ 26 both yield q > 1014.

Next, suppose ω1 ≤ 12 and ω2 ≥ 26. Set k0 to be the product of K2 and
the least three primes in K1. Thus s ≤ 9, δ ≥ 1 − 1

7
− . . .− 1

37
> 0.440 and

∆s,δ < 20.19. By the above, W (k0) < 8q
65

99 and (3.4) is satisfied whenever
q ≥ 1615716202. This is the case since ω2 ≥ 26, whence q > 1014.

Finally, suppose ω1 ≥ 13 and ω2 ≤ 25. Put k0 = K1. Then s ≤ 25, δ ≥
1 −

∑

l≤571

l≡1(mod 10)

1

l
> 0.743 and ∆s,δ < 34.31. Now (3.4) is satisfied whenever

q ≥ 2651. This completes the proof since ω1 ≥ 13 implies q > 1014. �

Following Lemma 3.7, we assume ω1 ≤ 12, ω2 ≤ 25 and run the full sieving
process. The sieving steps are shown in the table below, where qmin denotes
the minimum integer q satisfying (3.4) numerically.

# q ω1 ≤ ω2 ≤ k0 ω(k0) s ≤ δ ≥ ∆s,δ < qmin

1 12 25 30 3 34 0.263 127.48 9179
2 ≤ 9178 5 8 6 2 11 0.378 28.46 1025
3 ≤ 1024 4 7 6 2 9 0.461 19.36 697
4 ≤ 696 4 6 6 2 8 0.469 16.93 610
5 ≤ 609 4 5 6 2 7 0.479 14.53 524
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In line 5, q ≤ 609 yields ω2 ≤ 6, but as there are no values of q in this range
with ω2 = 6, we can suppose ω2 ≤ 5. (Similar reductions apply to subsequent
tables.)

At this point, it is appropriate to separate the calculations regarding mod 3.
Firstly, criterion (3.4) takes a milder form for values of q ≡ 2 (mod 3) and
line 5 of the table above gives qmin = 175. We may then suppose q ≤ 174,
ω1 ≤ 3 and ω2 ≤ 5. Putting k0 = 6 gives s ≤ 6, δ ≥ 0.621, ∆s,δ ≤ 10.06 and
qmin = 121.

Secondly, when q ≡ 1 (mod 3) but q 6≡ 1 (mod 9), then 3 is not a factor of
Pn,m. In line 5 we obtain ω1 ≤ 3 and ω2 ≤ 5. Putting k0 = 2 yields s ≤ 7,
δ ≥ 0.479, ∆s,δ ≤ 14.53 and qmin = 262. We may then suppose q ≤ 261,
ω1 ≤ 3 and, as there are no values of q in this range with ω2 = 5, we proceed
assuming ω2 ≤ 4. Again we set k0 = 2. Now δ ≥ 0.493, ∆s,δ ≤ 12.15 and
qmin = 219.

The remaining prime powers are checked separately. In fact, by individual
consideration, all remaining prime powers ≥ 121, other than q = 163, satisfy
(3.4) with k0 the least prime factor of Pn,m. These comprise 361, 343 and 289
(

≡ 1 (mod 9)
)

together with 211, 199, 196, 193, 181, 169, 157, 151, 139 and

127
(

≡ 1 (mod 3)
)

. Indeed, lower values of q similarly satisfy (3.4) except for
q = 109, 67, 64, 61, 49, 43, 37, 31, 25, 19, 16, 13, 11, 8, 7, 5, 4 and 2. For
these and for q = 163 a primitive polynomial had to be found explicitly in
each case, using Maple.

3.1.2. Sextics: the non-zero problem. Write the product of distinct primes in
q
6 − 1 as K1 · K2, where K1 is the product of all distinct prime divisors of

q
2 − 1 and K2 is the product of distinct prime divisors of q6−1

q2−1
that do not

divide q2 − 1. Notice that 3 cannot be a factor of K2 and so (by an analogue
of Lemma 3.6) any prime divisor l of K2 is ≡ 1 (mod 6), i.e., l ∈ L6. Denote
ω(K1) by ω1 and ω(K2) by ω2.

Lemma 3.8. Suppose that n = 6, ω1 ≥ 13 or ω2 ≥ 15. Let a (6= 0) ∈ Fq.

Then there exists a primitive polynomial of degree 6 over Fq with the coefficient

of x3 prescribed as a.

The proof of Lemma 3.8 is similar to that of Lemma 3.7.
Consequently to Lemma 3.8, we now assume ω1 ≤ 12, ω2 ≤ 14 and run the

full sieving process: steps are shown in the following table. Here qmin denotes
the minimal integral value of q for which (3.4) holds with the displayed value
of δ.

# q ≤ ω1 ≤ ω2 ≤ k0 ω(k0) s ≤ δ ≥ ∆s,δ < qmin

1 12 14 30 3 24 0.241 93.29 356
2 355 5 7 6 2 11 0.235 44.56 138
3 137 5 6 6 2 9 0.295 29.12 104
4 103 5 5 6 2 8 0.318 24.02 91
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Here, as in Lemma 3.7, in the last line, ω2 ≤ 6, has been reduced to ω2 ≤ 5.
We now assume q ≤ 89 separately treat q ≡ 1 and q ≡ 2 (mod 3). When

q ≡ 2 (mod 3), ω1, ω2 ≤ 5 and setting k0 = 6 results in s, δ and ∆s,δ as in row
4 of the table above, and qmin = 44. Assuming q ≤ 41 and putting k0 = 6,
gives s ≤ 7, δ ≥ 0.377, ∆s,δ ≤ 17.92 and qmin = 36.

When q ≡ 1 (mod 3) but q 6≡ 1 (mod 9), then ω1 ≤ 4 and ω2 ≤ 5. We put
k0 = 2 and obtain s ≤ 8, δ ≥ 0.318, ∆s,δ ≤ 24.04 and qmin = 58.

There are two values of q ≡ 1 (mod 9) in between 89 and 36, namely q = 73
and q = 64, and both satisfy condition (3.4) when we set k0 to be the smallest
divisor of Pn,m.

Of all the other values of q left out by the sieve procedure, q = 49, 43,
32, 31, 29, 25, 23 and 17, satisfy condition (3.4) with ω(k0) = 1. Primitive
polynomials for q = 37, 19, 16, 13, 11, 8, 7, 5, 4 and 2 had to be found
explicitly, using Maple.

3.1.3. Sextics: the zero problem. Suppose thet the prescribed coefficient a is
zero. By Lemma 2.1, it suffices to prove that π0(Qn) is positive. Now, putting
a = 0 in (3.3) yields the following proposition. Note that, by comparison with
the proof of Lemma 3.4 we always have to use the trivial bound

∣

∣S1(0, ¯̃ηd)
∣

∣ ≤
q − 1 since d|Qn.

Proposition 3.9. Let k|Qn and let (k0, s) be a decomposition of k. Suppose

q 6≡ 0 (mod 3) and

q
n−4

2 > 9W (k0)∆s,δ. (3.8)

Then π0(k) is positive.

Specifically, when s = 1 and k0 = Qn, the sufficient condition is

q
n−4

2 > 9W (Qn). (3.9)

Now take n = 6. Write the product of distinct primes in Q6 as K1 · K2,
where K1 is the product of all distinct prime divisors of q + 1 and K2 is the

product of distinct prime divisors of q6−1

q2−1
that do not divide q2 − 1. As in the

previous section, any prime divisor l of K2 is ≡ 1 (mod 6). Denote ω(K1) by
ω1 and ω(K2) by ω2.

Lemma 3.10. Suppose that n = 6, ω1 ≥ 12 or ω2 ≥ 25. Then there exists

a primitive polynomial of degree 6 over Fq with the coefficient of x3 equal to

zero.

The proof parallels that of Lemma 3.7, giving lower bounds for W (K1),
W (K2): though here K1 ·K2 is taken to be a divisor of qn−1

q−1
and not qn − 1.

Following Lemma 3.10, we assume ω1 ≤ 11, ω2 ≤ 24 and run the full sieving
process. The sieving steps are shown in the table below.
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# q ≤ ω1 ≤ ω2 ≤ k0 ω(k0) s ≤ δ ≥ ∆s,δ < qmin

1 11 24 30 3 32 0.174 180.17 12973
2 12972 5 10 30 3 12 0.437 27.18 1957
3 1956 4 8 6 2 10 0.322 29.96 1079
4 1078 4 7 6 2 9 0.337 25.74 927
5 926 4 6 6 2 8 0.354 21.78 785
6 784 3 6 6 2 7 0.445 15.49 558
7 557 3 5 6 2 6 0.468 12.69 468

Here there have been reductions to ω1 and ω2 in lines 5–7. When q ≤ 167,
polynomials were found explicitly, using Maple.

Remark. Proposition 3.9 can also be used easily to treat the zero problem
for m = 3 when n = 7, 8. This would avoid relying on the calculations used
in [13], [14], [21] and [7].

3.1.4. Septics. For degrees n = 7 and n = 8 we prove a stronger result and
prove the existence of primitive polynomials over Fq with prescribed third
coefficient and constant term (necessarily a primitive element of Fq). The
main tool here is Lemma 3.5.

Lemma 3.11. Suppose that n = 7 and ω(E7) ≥ 20. Let a (6= 0) ∈ Fq and

c be a primitive element of Fq. Then there exist a primitive polynomial of

degree 7 over Fq with the coefficient of x4 and the constant term specified as

a and −c, respectively.

Proof. Suppose ω(E7) ≥ 20. Then W (E7) < (E7)
1

8 < (q7)
1

8 < q
7

8 . Then, by

(3.6), to show existence it suffices that q > 9 · q 7

8 , or q > 98, which obviously
holds as ω(E7) ≥ 20 yields q > 108. �

We can now assume ω(E7) ≤ 19 and sieve: the outcome is displayed in the
table below.

# q ≤ ω(E7) ≤ k0 ω(k0) ≤ s δ ≥ ∆s,δ < qmin

1 19 1 0 19 0.874 22.60 204
2 203 7 1 0 7 0.901 8.66 78
3 77 5 1 0 5 0.911 6.40 58

Next, q = 53, 49, 47, 43, 41, 37, 32, 31, 29, 23, 17 and 11 all satisfy criterion
(3.6) when k0 is set to be 1. But for q = 25, 19, 16, 13, 8, 7, 5, 4 and 2,
suitable primitive polynomials had to be searched for with Maple.

3.1.5. Octics. Express the product of distinct primes in E8 as K1 ·K2, where
K1 is the product of all distinct prime divisors of (q+1)(q2 +1) and K2 is the
product of distinct prime divisors of q4 + 1 that do not divide q4 − 1. By an
analogue of Lemma 3.6, any prime divisor l of K2 is ≡ 1 (mod 8), i.e., l ∈ L8.
Denote ω(K1) by ω1 and ω(K2) by ω2. Note that 2 is never a factor of E8.
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Lemma 3.12. Suppose that n = 8, ω1 ≥ 16 or ω2 ≥ 13. Let a (6= 0) ∈ Fq

and c be a primitive element of Fq. Then there exists a primitive polynomial

of degree 8 over Fq with the coefficient of x5 prescribed as a and constant term

c.

The proof is analogous to that of Lemma 3.7. Consequently, we now assume
ω1 ≤ 15, ω2 ≤ 12 and sieve. The sieving steps are shown in the table below.

# q ≤ ω1 ≤ ω2 ≤ k0 ω(k0) s ≤ δ ≥ ∆s,δ < qmin

1 15 12 15 2 25 0.247 99.17 234
2 233 7 5 3 1 11 0.274 38.50 79
3 78 6 4 3 1 9 0.328 26.40 61
4 60 5 4 3 1 8 0.381 20.38 52
5 51 5 3 3 1 7 0.392 17.31 46
6 45 3 3 3 1 5 0.560 9.15 31

Here there are reductions in ω1, ω2 in lines 5–6.
Each prime power q, 29 ≥ q ≥ 16, satisfies (3.6) with k0 the least prime in

E8. When q = 13, 11, 8, 7, 5, 4 or 2, however, the primitive polynomials had
to be found explicitly by Maple.

3.2. The ternary problem. In this section, we give a summary of appro-
priate p-adic analysis. It will later be applied first to the ternary problem
(when p = 3) and then to the even problem (when p = 2).

The fields Fq and Fqn will be identified with subsets (or finite quotient
rings) of an extension of the field Qp (the completion of the rational field
with respect to the p-adic metric).

Introduce definitions and notation as follows.

• Kn is the splitting field of the polynomial xqn − x over Qp.
• Γn (⊆ Kn) is the set of roots of the polynomial above (the Teichmüller

points of K). The non-zero elements of Γn form a cyclic group of order
q

n − 1.
• Rn denotes the ring of integers of Kn. Then

Γn ⊆ Rn =

{

∞
∑

i=0

p
i
γi, γi ∈ Γn

}

.

Moreover, Rn is a local ring with unique maximal ideal pRn and
Rn/pRn

∼= Fqn .
• Distinct elements of Γn are already distinct modulo p. For a set iso-

morphic to Fqn , temporarily denoted by Gn, all qn members of Γn

can be expressed uniquely in the form
∑∞

i=0
p

i
γi, γi ∈ Gn, where

γ ∈ Γn is already fixed by specifying γ0. For any integer e ≥ 1,
Γn,e is the set (of cardinality qn) of elements of Γn mod p

e, i.e., Γn,e =



104 The Hansen-Mullen primitivity conjecture

{
∑e−1

i=0
p

i
γi, γi ∈ Gn

}

, where we retain the notation γ for the mem-

ber associated with γ ∈ Γn,e. In particular, γqn

= γ for γ ∈ Γn,e.
Moreover, Gn = Γn,1

∼= Fqn .

• Rn,e =
{
∑e−1

i=0
p

i
γi, γi ∈ Γn,e

} ∼= Rn/p
e
Rn, so that Rn,e has cardinality

q
ne. (Thus Rn,e is a Galois ring.) Observe that here Rn,e/pRn,e

∼=
Fqn also. Moreover, Rn,1 = Γn,1, which can be identified with Fqn.
Conversely, each γ ∈ Γn,1 yields a unique lift, also denoted by γ, to
every Γn,e and to Γn itself. An element of (multiplicative) order r in
Γn,1 lifts to an element of the same order in each Γn,e and in Γn; in
particular, a primitive element lifts to a primitive element.

Next, consider objects relating to the extension Fqn/Fq. Note that K1 is a
subfield of Kn, with Γ1 ⊆ Γn, and R1 is a subring of Rn. Similar relationships
apply to the Galois rings. Further, note that the Galois group of Kn/K1 is
isomorphic to that of Fqn/Fq, being cyclic of order n and generated by the
Frobenius automorphism τn, where τn(γ) = γ

q
, γ ∈ Γn. More generally, on

Rn, τn (
∑∞

i=0
p

i
γi) =

∑∞
i=0

p
i
γ

q
i (where each γi ∈ Γn). This induces a ring

homomorphism τn on Rn,e such that τn
(
∑e−1

i=0
p

i
γi

)

=
∑e−1

i=0
p

i
γ

q
i (where now

each γi ∈ Γn,e).
Now we discuss polynomials. The polynomial xqn − x over Fq (and so over

R1) is the product of all monic irreducible polynomials of degree a divisor of
n. A typical monic irreducible polynomial f(x) of degree d (a divisor of n)
in R1,1[x] has the form

f(x) = (x− γ)(x− γ
q) · · · (x− γ

qd−1

) = x
d − σ1x

d−1 + · · ·+ (−1)d
σd , (3.10)

where γ ∈ Γn,1 and each σj ∈ Γ1,1. The polynomial f lifts to a (unique)
irreducible polynomial of degree d over each R1,e, and over R1 having the
same form, except that γ is the corresponding lifted element of Γ1,e or Γ1.
But note that, in general, the coefficients σj in (3.10) lie in R1,e (or R1), but
may not be in Γ1,e (or Γ1). From the above, the order of the polynomial f
(which equals the order of any of its roots) or any of its lifts has the same
value (a divisor of qn − 1). In particular, f is primitive if it is irreducible
of degree n and has order qn − 1: this holds if and only if any of its lifts is
primitive.

For any γ ∈ Γn, define its trace (over R1) as Tn(γ) := γ + τn(γ) + · · · +
τ

n−1

n (γ) = γ + γ
q + · · · + γ

qn−1 ∈ R1. Observe that Tn(cγ) = cTn(γ), c ∈ Γ1.
A trace function Tn with similar properties is induced on Γn,e.

Next, let γ ∈ Γn be a root of a lifted irreducible polynomial f(x) ∈ R1[x].
Eventually, we can suppose γ is primitive: for the moment it suffices that
f has degree n. Thus, (3.10) holds with d = n. Here σi denotes the i-th
symmetric function of the roots γ, γq

, . . . , γ
qn−1. Employing the trace, we

have that si, the sum of the i-th powers of the roots of f , is given by si =
Tn(γi) ∈ R. Of course, each si depends only on f and not on the specific
root γ: moreover, all this translates to the expansion of f as a polynomial in
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Re[x]. For our purposes, we require an expression for the p-adic expansion of
si.

We proceed to work with a lifted irreducible polynomial f of degree n

in R1[x] and eventually its reduction to R1,2. Henceforth, the letter t is
reserved for an positive integer 6≡ 0 (mod p). Note from above that, for any
such t, the value of stpi for any i ≥ 0 is already determined by st, and is

given by s
(i)
t := τ

i(st). For any t, write st =
∑∞

j=0
st,jp

j
, st,j ∈ Γ1, whence

s
(i)
t =

∑∞
j=0

s
2

i

t,jp
j. Since each positive integer L can be uniquely expressed as

L = tp
j, then any component st,j is uniquely associated with the integer tpj.

Now assume p = 3. In the context of 3-adic analysis Lemma 3.1 assumes
the following shape.

Lemma 3.13. Let f(x) = x
n − σ1x

n−1 + · · · + (−1)n
σn ∈ R1[x] be a (lifted)

irreducible polynomial with σi being a symmetric function of the roots of f ,

σ1, . . . , σn ∈ Γ1. Let si be the sum of the i-th powers of the roots of f . Then

3σ3 = σ2s1 − σ1s2 + s3 . (3.11)

Lemma 3.14. Let f , σi and si be as in Lemma 3.13. Then

2σ3 = s
3

1,0 − s1,0s2,0 + 2s3

1,1 (mod 3) .

Proof. Over R1,2, equality (3.11) translates to

6σ3 = s
3

1
− 3s1s2 + 2s3

= (s1,0 + 3s1,1)
3 − 3(s1,0 + 3s1,1)(s2,0 + 3s2,1) + 2(s3

1,0 + 3s3

1,1)

which, modulo 9, is congruent to 3s3

1,0 − 3s1,0s2,0 + 6s3

1,1. Hence 2σ3 = s
3

1,0 −
s1,0s2,0 + 2s3

1,1 (mod 3). �

We wish to assign the value a to the third coefficient, i.e., set σ3 = −a. In
characteristic 3, we can write −a = A

3
, A ∈ Fq. To achieve this, set s1,0 = 0

and s1,1 = A.
The characteristic function for the set of elements γ ∈ Γn,2 for which s1,0 =

0 and s1,1 = A is, with ξ = α0 + 3α1,

1

q2

∑

ξ∈R1,2

χ
(

ξ(Tn(γ) − 3A)
)

=
1

q2

∑

α0,α1∈Γ1,1

χ(n)

(

(α0 + 3α1)(γ)
)

χ(−3α0A),

It follows that, for k a divisor of qn − 1,

q
2
πa(k)

θ(k)
=

∫

d|k

∑

α0,α1∈Γ1,1

χ̄(3α0A) Sn(ξ; ηd), (3.12)

where Sn(ξ; η) =
∑

γ∈Γn,2
χ(ξγ)η(γ).

Of course, Sn(ξ; ηd) = 0 unless d = 1. Hence the ‘main term’ (correspond-
ing to ξ = 0) is qn − 1.

The next lemma summarises bounds for Sn(ξ; ηd) = 0 implied by [17] when
ξ 6= 0.
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Lemma 3.15. Suppose ξ = α0 + 3α1 ∈ R
∗
1,2. Then the following hold:

• Sn(ξ; 1) = 0;
• Sn(3α1; ηd) ≤ q

n

2 , α1 6= 0;

• Sn(α0; ηd) ≤ q
n

2 , α0 6= 0;

• Sn(α0 + 3α1; ηd) ≤ 3q
n

2 , α0α1 6= 0.

We consider the contribution to the right side of (3.12) from terms with
α0 6= 0. Replace α1 by α0α1 and γ by γ

α0

. The contribution is
∫

1<d|k

∑

α1∈Γ1,1

∑

α0∈Γ1,1

χ̄(3α0A)¯̃ηd(α0)Sn(1 + 3α1; ηd)

=

∫

1<d|k

∑

α1∈Γ1,1

S1(3A; ¯̃ηd)Sn(1 + 3α1; ηd) . (3.13)

For the terms with α0 = 0, α1 6= 0, replace γ by γ

α1

to yield the contribution
∫

1<d|k

∑

α1∈Γ
∗

1,1

¯̃ηd(α1)Sn(3; ηd) . (3.14)

Note that in (3.14), the sum over α1 is zero unless d|Qn (as ¯̃ηd is trivial).
It is time to split the discussion into zero and non-zero cases according to

the value of A. The zero case will only be needed when n = 6, and is therefore
treated in Section 3.2.3. Here we proceed supposing A 6= 0. Then by Lemma
3.15, the sum S1(3A; ¯̃ηd) in absolute value does not exceed 1 if d|Qn and does
not exceed

√
q otherwise. Hence, for each character ηd (1 < d|k) with d - Qn,

by Lemma 3.15, we obtain a total contribution of 3(q−1)q
n+1

2 = 3(1− 1

q
)q

n+3

2 .

On the other hand, for each character ηd (1 < d|k) with d|Qn, we obtain a
bound 3(q − 1)q

n

2 from contributions with α0 6= 0 (governed by (3.13)) and
(q − 1)q

n

2 from contributions with α0 = 0, α1 6= 0 (governed by (3.14)), a

total of 4(1 − 1

q
)q

n

2
+1. Since this is less than 3(1 − 1

q
)q

n+3

2 , for simplicity we

use the latter as a bound for the contribution for every ηd, d > 1.

Thus the right hand side of (3.12) is bounded by 3W (k)
(

1 − 1

q

)

q
n+3

2 . This

yields a sufficient condition (in the non-sieve case) of

q
n−3

2 > 3

(

1 − 1

q

)

W (k) .

More generally:

Proposition 3.16. Assume that q ≡ 0 (mod 3) and a ∈ F is non-zero.

Assume also that k|qn − 1 and that (k0, s) is a decomposition of k. Suppose

also that

q
n−3

2 > 3

(

1 − 1

q

)

W (k0)∆s,δ . (3.15)

Then πa(k) is positive.

|
|
|

|
|

|
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Multiplicatively, F∗
qn

∼= Γ∗
n,3. Take c to be a primitive element of F∗ ∼= Γ∗

1,1

as well as a 6= 0 (∈ F ∼= Γ1,1). Then, with k|En (by Lemma 2.2), there is an

analogous expression for
(q − 1)qπa,c

θ(k0)
to (3.12) comparable to the relationship

Lemma 3.5 bears to Lemma 3.4. In particular, each ‘integral’ on the right

side is also over a sum over characters ν ∈ ̂Γ∗
1,2 and each character such as ηd

or ηdpi
replaced by a product ηdν̂ ηdpi

ν̂, where ν̂ is the lift of ν to Γ∗
n,2.

Proposition 3.17. Assume that q ≡ 0 (mod 3), a ∈ F is non-zero and c

is a primitive element of F. Assume also that k|En and that (k0, s) is a

decomposition of k. Suppose also that

q
n−5

2 > 3

(

1 − 1

q

)

2

W (k0)∆s,δ . (3.16)

Then πa,c(k) is positive.

3.2.1. Quintics. Express the product of distinct primes in q
5 − 1 as K1 ·K2

and define ω1, ω2 as in Section 3.1.1 and note again that all prime divisors of
K2 are ≡ 1 (mod 10). Observe that, throughout Section 3.2, 3 is not a factor
of qn − 1.

Lemma 3.18. Suppose that n = 5, q ≡ 0 (mod 3) and ω1 ≥ 11 or ω2 ≥ 22.
Let a (6= 0) ∈ Fq. Then there exists a primitive polynomial of degree 5 over

Fq with the coefficient of x2 prescribed as a.

Even though the characteristic of the field is different, the proof of Lemma
3.18 is analogous to that of Lemma 3.7 and is not outlined here. Similarly,
we will omit proofs to Lemmas 3.19, 3.20, 3.21 and 3.22.

Following Lemma 3.18, we assume ω1 ≤ 10, ω2 ≤ 21 and obtain the follow-
ing table.

# q ω1 ω2 k0 ω(k0) s δ ≥ ∆s,δ < qmin

1 ≤ 10 ≤ 21 10 2 ≤ 29 0.291 98.22 1179
2 ≤ 729 ≤ 3 ≤ 6 2 1 ≤ 8 0.469 16.93 102
3 81 2 3 2 1 4 0.691 6.35 37.62...
4 27 2 2 2 1 3 0.831 4.41 25.48

When q = 9 or 3, primitive quintics with third coefficient prescribed have
to be found explicitly, using Maple. They are stated in Section 5.

3.2.2. Sextics: the non-zero problem. Express the product of distinct primes
in q6 − 1 as K1 ·K2 and define ω1, ω2 as in Section 3.1.2.

Lemma 3.19. Suppose that n = 6, q ≡ 0 (mod 3) and ω1 ≥ 9 or ω2 ≥ 12.
Let a (6= 0) ∈ Fq. Then there exists a primitive polynomial of degree 6 over

Fq with the coefficient of x3 prescribed as a.
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Consequently to the above Lemma, we now assume ω1 ≤ 8, ω2 ≤ 11 and
run the full sieving process: steps are shown in the following table.

# q ω1 ω2 k0 ω(k0) s δ ≥ ∆s,δ < qmin

1 ≤ 8 ≤ 11 10 2 ≤ 17 0.298 55.70 77
2 ≤ 27 ≤ 3 ≤ 4 2 1 ≤ 6 0.404 14.38 20

For primitive sextics when q = 9 or 3, see Section 5.

3.2.3. Sextics: the zero problem. An isolated case of the ternary problem
where considering the possibility of the third coefficient being prescribed zero
is needed, is when n = 6. Therefore we treat it in this separate subsec-
tion, complete with the estimates necessary to establish the criterion for the
existence of desired primitive polynomials.

Now, wishing to fix the third coefficient as zero, following Lemma 3.14 we
suppose A = 0. We may therefore assume also that k|Qn. Suppose 1 < d|Qn.
In this case, the sum S1(3A; ¯̃ηd) is trivially q−1 and we obtain a contribution
for each ηd bounded by the sum 3(q − 1)q

n

2
+1 (from (3.13)) and (q − 1)q

n

2

(from (3.14)). In total this is less than 3
(

1 − 2

3q

)

q
n+4

2 . Thus the right hand

side of (3.12) is bounded by 3W (k)
(

1 − 2

3q

)

q
n+4

2 . This yields a sufficient

condition of

q
n−4

2 > 3

(

1 − 2

3q

)

W (k0)∆s,δ . (3.17)

As always, when the coefficient is prescribed to be zero, we only need to
consider W (Qn). Therefore we express the product of distinct primes in Q6

as K1 ·K2 and define ω1, ω2 as in Section 3.1.3.

Lemma 3.20. Suppose that n = 6, q ≡ 0 (mod 3) and ω1 ≥ 10 or ω2 ≥ 23.
Then there exists a primitive polynomial of degree 6 over Fq with the coefficient

of x3 prescribed as zero.

Here is the sieving table.

# q ω1 ω2 k0 ω(k0) s δ ≥ ∆s,δ < qmin

1 ≤ 9 ≤ 22 70 3 ≤ 28 0.368 75.37 1809
2 ≤ 729 ≤ 3 ≤ 7 2 1 ≤ 9 0.337 25.74 155
3 81 2 4 2 1 5 0.741 7.40 44.03...

When q = 27, 9 or 3, primitive sextics with zero third coefficient are stated
in Section 5.

Remark. Similarly, (3.17) could be used to treat the zero problem when
n = 7, 8.
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3.2.4. Septics.

Lemma 3.21. Suppose that n = 7, q ≡ 0 (mod 3) and ω(E7) ≥ 16. Let

a (6= 0) ∈ Fq and c be a primitive element of Fq. Then there exists a primitive

polynomial of degree 7 over Fq with the coefficient of x4 and the constant term

specified as a and −c, respectively.

We can now assume ω(E7) ≤ 15. The sieving steps are shown in the table
below.

# q ω(E7) k0 ω(k0) s δ ≥ ∆s,δ < qmin

1 ≤ 15 1 0 ≤ 15 0.879 17.93 54
2 ≤ 27 ≤ 4 1 0 ≤ 4 0.919 5.27 16
3 9 2 1 0 3 0.997 3.01 7.13...

The primitive septics with prescribed third coefficient are in Section 5.

3.2.5. Octics. Express the product of distinct primes in E8 as K1 · K2 and
define ω1, ω2 as in Section 3.1.5.

Lemma 3.22. Suppose that n = 8, q ≡ 0 (mod 3) and ω1 ≥ 11 or ω2 ≥ 10.
Let a (6= 0) ∈ Fq and c be a primitive element of Fq. Then there exists a

primitive polynomial of degree 8 over Fq with the coefficient of x5 and the

constant term specified as a and c, respectively.

Consequently to Lemma 3.22, we now assume ω1 ≤ 10, ω2 ≤ 9 and sieve:

# q ω1 ω2 k0 ω(k0) s δ ≥ ∆s,δ < qmin

1 ≤ 10 ≤ 9 5 1 ≤ 18 0.331 53.36 47
2 ≤ 27 ≤ 4 ≤ 3 1 0 ≤ 7 0.392 17.31 14
3 ≤ 9 ≤ 3 ≤ 2 1 0 ≤ 5 0.483 10.29 8.41...
4 3 1 1 1 0 2 0.775 3.30 2.68...

4. Prescribing the fourth coefficient

This section deals with m = 4. It achieves the final goal of settling the
existence of primitive polynomials with (n,m) = (8, 4), thereby completing
the proof of the Hansen-Mullen conjecture. Consider separately the fields of
characteristic 2 (the even problem) and those with odd characteristic (the
odd problem).

4.1. The odd problem. Throughout this section Fq is a field of charac-
teristic not 2. Putting m = 4 in Lemma 3.1 and setting s1 = 0 (already)
yields

4σ4 = −σ2s2 − s4 . (4.1)

(Working in this order avoids any difficulties in characteristic 3.)
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Condition (4.1) can be further expressed as

8σ4 = s
2

2
− 2s4 .

For a ∈ Fq and for any z ∈ Fq, setting s2 = z and 2s4 = z
2 − 8a fixes

the fourth coefficient of the polynomial as a. Now, using the characteristic
functions defined in Section 2, we can deduce a basic formula for πa(k).

Lemma 4.1. Suppose q is odd, a ∈ Fq is given and k|qn − 1. Then

q
3
πa(k) = θ(k)

∫

d|k

∑

α,β,z∈Fq

χ̄(α(z2 − 8a) + βz) Sn(2α, β; ηd) , (4.2)

where Sn(α, β; η) denotes the character sum
∑

γ∈Fqn
χn(αγ2 + βγ)η(γ).

More generally, suppose that (k0, s) is a decomposition of k. Then

q
3
πa(k)

θ(k0)
= δ

∫

d|k0

∑

α,β,z∈Fq

χ̄
(

α(z2 − 8a) + βz
)

Sn(2α, β; ηd)

(4.3)

+
s
∑

i=1

(

1 − 1

pi

)
∫

d|k0

∑

α,β,z∈Fq

χ̄
(

α(z2 − 8a) + βz
)

Sn(2α, β; ηdpi
) .

In particular, the contribution to the right side of (4.3) attributable to values

of α = β = 0 (the ‘main term’) is δq(qn − 1).

Proof. For (4.3) use the equivalence of the right sides of (2.3) and (2.4).
For the main term, observe that Sn(0, 0; ηd) is zero unless d = 1 when the

value is qn−1. Then summing over z ∈ Fq we obtain the ‘main term’ in (4.3).
Of course, (4.2) is recovered from (4.3) by setting s = 1. �

Estimates for Sn(α, β; ηd) are standard:

Lemma 4.2. Suppose α, β ∈ Fq, not both 0.
If α = 0, then Sn(0, β; 1) = 0; otherwise

∣

∣Sn(α, β; 1)
∣

∣ ≤ q
n

2 .

Suppose d|qn − 1 with d > 1. Then

∣

∣Sn(α, β; ηd)
∣

∣ ≤







2q
n

2 , if α 6= 0 ,

q
n

2 , if α = 0 .

Of course, now S1(α, β; ηd) is not the same function as S1(κβ
T
, η) in Section

3.
At this point it is convenient to split the discussion in two parts: the

zero and the non-zero problem. First consider the case when the prescribed
coefficient a is non-zero.
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4.1.1. The odd non-zero problem.

Proposition 4.3. Suppose q is odd and a 6= 0. Let k|qn − 1 and (k0, s) be a

decomposition of k. Suppose

q
n−4

2 > 4W (k0)∆s,δ . (4.4)

Then πa(k) is positive.

Proof. Consider the expression (4.3). We aggregate the contributions to the
right side relating to a specific multiplicative character ηd or ηdpi

(without
the weighting factor implicit in the integral notation). Denote by η̃d the
restriction of ηd to Fq, the significance being that η̃d has order d

gcd(d,Qn)
.

Suppose d|k0 and take ηd (similar reasoning applies to each ηdpi
). Consider

the contribution of terms with β 6= 0. Replace γ ∈ Fqn by γ

β
∈ Fqn , α ∈ Fq

by αβ2 ∈ Fq, and z ∈ Fq by z
β
∈ Fq. We obtain

δ

∑

α∈Fq

∑

β∈F∗

q

χ(8aαβ2)¯̃ηd(β)
∑

z∈Fq

χ̄(αz2 + z) Sn(2α, 1; ηd) ,

which is the same as

δ

∑

α∈Fq

S1(8aα, 0; ¯̃ηd) S1(α, 1; 1) Sn(2α, 1; ηd) . (4.5)

The expression (4.5) is essentially the same as in the proof of Proposition
4.1 in [10]. Similarly, we obtain an analogous expression when considering
the contribution from terms with β = 0. We therefore do not give a detailed
discussion here; summarising, we obtain an absolute bound of 4δq

n

2
+3 for the

(non-weighted) contribution of all terms corresponding to a character ηd.
The remaining terms on the right side of (4.3) (involving characters like

ηdpi
) are estimated in the same way: we have used no special properties for

d|k0. Taking into account that there are φ(d) characters of order d for each
divisor d we deduce that numerically the right side of (4.3) exceeds

δ
(

q
n+1 − 4q

n

2
+3∆s,δ

)

,

with ∆s,δ as in Section 2, since
s
∑

i=1

(

1 − 1

pi

)

= s− 1 + δ.

�

Now consider n = 8. Criterion (4.4) then takes form

q
2
> 4W (k0)∆s,δ . (4.6)

Express the product of distinct primes in q
8 − 1 as K1 ·K2 where K1 is the

product of all distinct prime divisors of (q2 +1)(q2 +1) and K2 is the product
of distinct prime divisors of q4 + 1 that do not divide q4 − 1. Remember that
any prime divisor l of K2 is an element of L8. Denote ω(K1) by ω1 and ω(K2)

by ω2. Note that 16|q4 − 1 and therefore ω1 = ω( q4−1

8
).



112 The Hansen-Mullen primitivity conjecture

Lemma 4.4. Suppose that n = 8, a (6= 0) ∈ Fq, q odd and ω1 ≥ 13 or

ω2 ≥ 7. Then there exists a primitive polynomial of degree 8 over Fq with the

coefficient of x5 specified as a.

Though the characteristic of the field is now different, the proof of this
lemma parallels those of analogous lemmas in Section 3 and is omitted. Also
the proofs of Lemmas 4.6, 4.13 and 4.14 will be omitted.

Now suppose ω1 ≤ 12 or ω2 ≤ 6. Employing the sieve, the existence of
primitive octics with forth coefficient prescribed as a 6= 0 is proved in just
two steps for q ≥ 17. First, taking k0 to be the product of three least primes
in K1 yields s ≤ 14, δ > 0.371, ∆s,δ < 37.05 and condition (4.6) holds for
q ≥ 35. Now take k0 to be the product of two least primes in K1. Hence
s ≤ 7, δ > 0.393, ∆s,δ < 17.31 and (4.6) is satisfied when q ≥ 17. Applying
(4.6) to q = 13 and 11 with k0 = 6 also proves existence for these two values.
Only q = 7, 5 and 3 need direct verification with Maple.

4.1.2. The odd zero problem. When the prescribed coefficient is zero, it suf-
fices to prove that π0(Qn) is positive. Considering expression (4.5) with a = 0
and proceeding as before, the following proposition is derived.

Proposition 4.5. Suppose q is odd, a = 0 and n = 8. Let k|Q8 and (k0, s)
be a decomposition of k. Suppose

q
3

2 > 4W (k0)∆s,δ . (4.7)

Then π0(k) is positive.

Express the product of distinct primes in Q8 as K1 ·K2, where K1 is the
product of all distinct prime divisors of (q + 1)(q2 + 1) (and so even) and K2

is the product of distinct odd prime divisors of q4 + 1. By an analogue of
Lemma 3.6 any prime divisor l of K2 is ≡ 1 (mod 8), i.e., l ∈ L8. Denote
ω(K1) by ω1 and ω(K2) by ω2.

Lemma 4.6. Suppose that n = 8, a = 0, q odd and ω1 ≥ 16 or ω2 ≥ 12. Then

there exists a primitive polynomial of degree 8 over Fq with the coefficient of

x
5 specified as 0.

Now assume ω1 ≤ 15 and ω2 ≤ 11 and begin the sieve. In the first step,
take k0 to be the product of three least primes in K1. Then s ≤ 23, δ > 0.279,
∆s,δ < 80.86 and criterion (4.7) holds for q ≥ 99. Now, taking k0 to be the
product of two least primes in K1 yields s ≤ 8, δ > 0.381, ∆s,δ < 20.38 and
(4.7) is satisfied for q ≥ 48. It also holds for q = 47, 43, 41, 37, 31, 29, 27, 25,
23 and 19, but smaller values (17, 13, 11, 9, 7, 5, 3) need direct verification
with Maple.
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4.2. The even problem.

Lemma 4.7. Let f(x) = x
n − σ1x

n−1 + · · · + (−1)n
σn ∈ R1[x] be a (lifted)

irreducible polynomial with σi being a symmetric function of the roots of f ,

σ1, . . . , σn ∈ Γ1. Let si be the sum of the i-th powers of the roots of f . Then

4σ4 = σ3s1 − σ2s2 + σ1s3 − s4 . (4.8)

Lemma 4.8. Let f , σi and si be as in Lemma 4.7. Suppose s1,0 = 0. Then

σ4 ≡ s
4

1,2 (mod 2).

Proof. Over R1,3, si i = 1, ..., 4 expand to s1 = s1,0 + 2s1,1 + 4s1,2, s2 =
s
2

1,0 + 2s2

1,1 + 4s2

1,2, s3 = s3,0 + 2s3,1 + 4s3,2 and s4 = s
4

1,0 + 2s4

1,1 + 4s4

1,2.
Accordingly, (4.8) translates to

4σ4 ≡ 4s4

1,0 + 4s1,0(s3,0 + 2s3,1 + 4s3,2) + 4s4

1,2 (mod 8) ,

σ4 ≡ s
4

1,0 + s1,0(s3,0 + 2s3,1 + 4s3,2) + s
4

1,2 (mod 2) . (4.9)

Setting s1,0 = 0 in (4.9) yields σ4 ≡ s
4

1,2 (mod 2). �

As a consequence of Lemma 4.8, for σ4 to be prescribed modulo 2, it suffices
to prescribe s1,0 = 0 and s1,2 ∈ Γ1 appropriately. The value of s1,1 appears
to be irrelevant. Nevertheless, in practice we cannot prescribe s1,2 without
assigning a value (say z ∈ Γ1,1) to s1,1. In view of Lemma 4.8, given a ∈ Fq

∼=
Γ1,1, write a = A

4
, A ∈ Fq. We wish to prescribe s1 = s1,0+2s1,1+4s1,2 ∈ R1,2

as 2z + 4A.
In order to apply Lemma 4.8, we require to work with the multiplicative

characters of Γ∗
n,3, a cyclic group of order qn − 1, and the additive characters

of Rn,3. So now, for any divisor d of qn − 1, ηd is a character of order d.
It is extended to Γn,3 by setting ηd(0) = 0. In particular, η1 is the trivial
character: for an alternative version with η(0) = 1 we write η = 1. For
additive characters, write χ(n) for the canonical additive character of Rn,3:
thus

χ(n)(γ) = exp

(

2πTnu(γ)

8

)

, q = 2u
, γ ∈ Rn,3 .

Here Tnu(γ) yields the absolute trace of γ. In particular, set χ(1) = χ. The
characteristic function for the set of elements γ ∈ Γn,3 for which s1(= s1,0 +
2s1,1 + 4s1,2) = 2z + 4A is

1

q3

∑

ξ∈R1,3

χ

(

ξ
(

Tn(γ) − (2z + 4A)
)

)

, (4.10)

which equals

1

q3

∑

α0,α1,α2∈Γ1,1

χ(n)

(

(α0 + 2α1 + 4α2)(γ)
)

χ
(

−2(α0 + 2α1)z − 4α0A
)

.

For the next lemma, note that, if ξ = α0+2α1+4α2 ∈ R1,3 with α0, α1, α2 ∈
Γ1,1, then 2ξ = 2ξ̂, where ξ̂ = α0 + 2α1 ∈ R1,2.
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Lemma 4.9. Write ξ ∈ R
∗
1,3 as ξ̂ + 4α2, where ξ̂ ∈ R1,2 and α2 ∈ Γ1,1. Set

Uξ =
∑

z∈Γ1,1
χ(2ξz). Then Uξ = 0 unless ξ̂ = 0 (and α2 6= 0) in which case

Uξ = q, or ξ̂ = ±α0 (6= 0), in which case Uξ = 1±i
2

· q, respectively.

Proof. If ξ̂ = 0 (and α2 6= 0) the result is obvious. Otherwise Uξ =
∑

z∈Γ1,1
χ(ξ̂z)

and the conclusion follows from Lemma 6.3 of [10].
�

For k|qn − 1 and a 6= 0 ∈ Fq, write πa(k) for the number of k-free elements
of Fqn whose characteristic polynomial has first coefficient zero and fourth
coefficient a = A

4 ∈ Fq.

Lemma 4.10. Assume q is even and a = A
4 ∈ Fq

∼= Γ∗
1,1. Let k|qn − 1 and

(k0, s) be a decomposition of k. Then

q
2
πa(k)

θ(k0)
= δ

(

q
n − 1 +

∫

d|k0

∑

α∈Γ
∗

1,1

¯̃ηd(α)Sn(4, ηd)

+
1

2

∫

d|k0

∑

β∈Γ1,1

∑

α∈Γ
∗

1,1

χ̄(4αA)¯̃ηd(α)
{

(1−i)Sn(1 + 4β; ηd) +

(1+i)Sn

(

−(1 + 4β); ηd

)

})

+

s
∑

i=1

(

1 − 1

pi

)

(

∑

α∈Γ
∗

1,1

¯̃ηd(α)Sn(4, ηdpi
)

+
1

2

∫

d|k0

∑

β∈Γ1,1

∑

α∈Γ∗

1,1

χ̄(4αA)¯̃ηdpi
(α)
{

(1−i)Sn(1 + 4β; ηdpi
)

+(1+i)Sn

(

−(1 + 4β); ηdpi

)

})

,

where, for ξ ∈ R1,3, Sn(ξ; ηd) :=
∑

γ∈Γn,3
χ(n)(ξγ)ηd(γ) and η̃d is the restric-

tion of ηd to Γ1,1.

Proof. For notational simplicity consider only the trivial decomposition of k
with s = 1. Write ξ = α0 + 2α1 + 4α2 = ξ̂+ 4α2 for a typical element of R1,3.

From the characteristic functions (in particular (4.10)) one obtains

q
3
πa(k)

θ(k)
=

∫

d|k

∑

ξ∈R1,3

χ(4α0A) Uξ Sn(ξ; ηd) , (4.11)

with Uξ as in Lemma 4.9. Since Sn(0; ηd) = 0 unless d = 1, the contribution
to (4.11) from ξ = 0 (the ‘main term’) is q(qn − 1).

From Lemma 4.9, Uξ = 0 unless ξ̂ = 0 (i.e., ξ = 4α2 6= 0), or ξ = ±α0. Note
that, when Uξ is non-zero, its value can be expressed as cq and, ultimately, a



Stephen D. Cohen and Mateja Prešern 115

factor of q is cancelled from (4.11). We consider the contributions from these
excepted ξ.

First suppose ξ̂ = 0, i.e., α0 = α1 = 0 but αd 6= 0. Then Uξ = q.
Replacing γ by γ

α2

in the expression for Sn(4α2; ηd), we obtain the sum

q
∑

α2∈Γ
∗

1,1

¯̃ηd(α2)Sn(4; ηd), which is equivalent to the expression shown.

Now consider the contribution from ξ̂ = ±α0 6= 0, i.e., α0 6= 0, α1 = 0, α2

arbitrary. Replace γ ∈ Γn,3 by γ

α0

∈ Γn,3 and α2 ∈ Γ1,1 by α0β ∈ Γ1,1 to
obtain the remainder of the displayed identity. �

The relevant bounds for
∣

∣Sn(ξ; ηd)
∣

∣ are as follows.

Lemma 4.11. Suppose ξ ∈ R
∗
1,3. Then Sn(ξ; 1) = 0. Further, if d (> 1)

divides qn − 1, then one has
∣

∣Sn(ξ; ηd)
∣

∣ ≤ 4q
n

2 . Indeed, if β ∈ Γ1,1 then
∣

∣Sn(4; ηd)
∣

∣ ≤ q
n

2 .

Proof. This follows from Corollary 6.1 of [19]. The significant point is that
the polynomial (α0 + 2α1 + 4α2)x ∈ R

∗
1,3[x] has weighted degree 4 (if α0 6= 0)

or 1 (if α0 = α1 = 0). �

Again it is now convenient to split the discussion into the non-zero or zero
problems.

4.2.1. The even non-zero problem. Suppose that q is even and that the pre-
scribed coefficient a ∈ F ∼= Γ1,1 is non-zero.

Proposition 4.12. Assume that q is even and a ∈ F is non-zero. Assume

also that k|qn − 1 and that (k0, s) is a decomposition of k.Suppose also that

q
n−3

2 > 4
√

2 W (k0)∆s,δ . (4.12)

Then πa(k) is positive.

Proof. Again for notational simplicity focus on the situation when the decom-
position of k is trivial, i.e., k0 = k and only the first two lines of the identity
of Lemma 4.10 are relevant. Indeed, apart from the main term q

n−1, for any
divisor d of k the balance of the contributions relating to multiplicative char-
acters ηd arise from the first line and the second line is different, according to
the value of d.

Specifically, suppose d|Qn. Then ¯̃ηd is trivial and so
∑

α∈Γ
∗

1,1

¯̃ηd(α) = q− 1.

Hence, by Lemma 4.11, the characters of order d contribute (q−1)q
n

2 from the
first line. On the other hand, from the second line

∑

α∈Γ
∗

1,1

χ̄(4αA)¯̃ηd(α) =
∑

α∈F∗

q

χ̄0(αA), where χ0 is the canonical additive character on Fq, and this

is ≤ 1 in absolute value. Hence, by Lemma 4.11, the contributions from
the second line of multiplicative characters of order d do not exceed q

n+1

2 .
Accordingly, the total contributions from characters or order d is certainly
bounded by 2q

n

2
+1.
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Finally, suppose, d - Q0. Then, in the first line,
∑

α∈Γ
∗

1,1

¯̃ηd(α) = 0. By

the same lemma (with n = 1), in the second line
∑

α∈Γ∗

1,1

χ̄(4αA)¯̃ηd(α) ≤ q
1

2

and, of course
∣

∣Sn(±(1 + 4β); ηd)
∣

∣ ≤ 4q
n

2 . Accordingly, the contribution of

characters of order d is bounded by 4
√

2q
n+3

2 . Since this easily exceeds the
contribution for a divisor d of Qn, we can use this as a global bound for any
d|k and the result follows.

�

Express the product of distinct primes in q
8 − 1 as K1 · K2, where K1 is

the product of all distinct odd prime divisors of q4 − 1 and K2 is the product
of distinct odd prime divisors of q4 + 1. By an analogue of Lemma 3.6 any
prime divisor l of K2 is ≡ 1 (mod 8), i.e., l ∈ L8. Denote ω(K1) by ω1 and
ω(K2) by ω2.

Lemma 4.13. Suppose that n = 8, q odd, ω1 ≥ 8 or ω2 ≥ 5. Let a (6= 0) ∈ Fq.

Then there exists a primitive polynomial of degree 8 over Fq with the coefficient

of x4 prescribed as a.

After Lemma 4.13 we can assume ω1 ≤ 7 and ω2 ≤ 4 and start the sieving
process. It turns out, however, that one sieving step is enough. Taking
k0 = 3 · 5 yields s ≤ 9, δ ≥ 0.285 and ∆s,δ < 18.50 whence (4.12) is satisfied
for q ≥ 12. Next, putting k0 = 3, q = 8 satisfies (4.12), but the appropriate
primitive polynomials over fields F4 and F2 have to be found explicitly.

4.2.2. The even zero problem. To fix the fourth coefficient as zero, following
Lemma 4.8 we suppose A = 0. We may therefore assume also that k|Qn.
Suppose 1 < d|Qn and take n = 8. A sufficient condition is then

q
2
> 4

√
2 W (k0)∆s,δ . (4.13)

Define K1, K2 as in Section 4.1.2 and note that both K1 and K2 are odd.
Denote ω(K1) by ω1 and ω(K2) by ω2.

Lemma 4.14. Suppose that n = 8, q odd, ω1 ≥ 10 or ω2 ≥ 8. Then there

exists a primitive polynomial of degree 8 over Fq with the coefficient of x4

prescribed as 0.

Consequently to Lemma 4.14, assume ω1 ≤ 9 and ω2 ≤ 7 and begin the
sieve. Taking k0 to be the product of least three primes in K1 yields s ≤ 13,
δ > 0.450, ∆s,δ < 28.67 and condition (4.13) holds for q ≥ 37. Hence assume
ω1 ≤ 5, ω2 ≤ 3 and set k0 = 3. Then s ≤ 7, δ > 0.392, ∆s,δ < 17.31
and condition (4.13) holds for q ≥ 14. For the three remaining values of q,
primitive polynomials in F8[x], F4[x] and F2[x] have to be found explicitly.

5. Tables of polynomials

Here we give a primitive polynomial, found with Maple, for each case (n, q),
where the existence of a primitive polynomial of degree n over Fq cannot be
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confirmed by criteria derived in Sections 3.2 and 4. In Section 3.1, however,
there are too many polynomials to list and, as an illustration, we only give
primitive polynomials of degree 5 over the largest field F163.

Note that the total amount of computation is small and was not needed for
every degree n. As before, a is the prescribed third coefficient of a polynomial.

We begin with polynomials with prescribed third coefficient. First, consider
the standard problem, that is, when q 6≡ 0 (mod 3). We list 3-tuples (a, b, c),
1 ≤ a ≤ 162, representing primitive polynomials of degree 5 over F163 of the
form x

5 + ax
2 + bx + c:

(1, 0, 14), (2, 0, 15), (3, 0, 14), (4, 0, 4), (5, 0, 16), (6, 0, 9), (7, 0, 10), (8, 0, 9), (9, 0, 15),

(10, 0, 15), (11, 0, 15), (12, 0, 10), (13, 0, 43), (14, 0, 15), (15, 0, 35), (16, 0, 4),

(17, 0, 9), (18, 0, 24), (19, 0, 10), (20, 0, 4), (21, 0, 9), (22, 0, 16), (23, 0, 24), (24, 0, 4),

(25, 0, 10), (26, 0, 47), (27, 0, 26), (28, 0, 10), (29, 0, 4), (30, 0, 9), (31, 0, 9), (32, 0, 39),

(33, 0, 10), (34, 0, 35), (35, 0, 14), (36, 1, 33), (37, 0, 15), (38, 0, 81), (39, 0, 9),

(40, 0, 15), (41, 0, 83), (42, 0, 14), (43, 0, 4), (44, 0, 24), (45, 0, 9), (46, 0, 4), (47, 0, 43),

(48, 0, 14), (49, 0, 14), (50, 0, 14), (51, 0, 9), (52, 0, 10), (53, 0, 4), (54, 0, 4), (55, 0, 9),

(56, 0, 16), (57, 0, 35), (58, 0, 24), (59, 0, 10), (60, 0, 10), (61, 1, 4), (62, 0, 16),

(63, 0, 9), (64, 1, 14), (65, 0, 35), (66, 0, 4), (67, 0, 9), (68, 0, 16), (69, 0, 14), (70, 0, 46),

(71, 0, 39), (72, 0, 9), (73, 0, 9), (74, 0, 26), (75, 0, 9), (76, 0, 4), (77, 0, 10), (78, 0, 14),

(79, 0, 14), (80, 0, 9), (81, 0, 9), (82, 0, 35), (83, 0, 9), (84, 0, 10), (85, 0, 39), (86, 0, 39),

(87, 0, 4), (88, 0, 14), (89, 0, 15), (90, 0, 43), (91, 0, 9), (92, 0, 4), (93, 0, 10), (94, 0, 15),

(95, 0, 10), (96, 0, 24), (97, 0, 14), (98, 0, 9), (99, 0, 10), (100, 0, 4), (101, 0, 4),

(102, 0, 4), (103, 0, 9), (104, 0, 4), (105, 0, 4), (106, 0, 16), (107, 0, 26), (108, 0, 15),

(109, 0, 4), (110, 0, 15), (111, 0, 26), (112, 0, 4), (113, 0, 10), (114, 0, 9), (115, 1, 4),

(116, 0, 9), (117, 0, 24), (118, 0, 4), (119, 0, 9), (120, 0, 14), (121, 0, 9), (122, 0, 4),

(123, 0, 4), (124, 0, 24), (125, 0, 4), (126, 1, 10), (127, 0, 24), (128, 0, 14), (129, 0, 43),

(130, 0, 4), (131, 0, 24), (132, 1, 10), (133, 0, 43), (134, 0, 16), (135, 0, 46), (136, 1, 26),

(137, 0, 15), (138, 0, 4), (139, 0, 14), (140, 0, 14), (141, 0, 26), (142, 0, 16), (143, 0, 10),

(144, 0, 4), (145, 0, 4), (146, 0, 35), (147, 0, 4), (148, 0, 9), (149, 0, 4), (150, 1, 56),

(151, 0, 10), (152, 0, 24), (153, 0, 4), (154, 0, 15), (155, 0, 26), (156, 0, 14), (157, 0, 10),

(158, 1, 33), (159, 0, 10), (160, 0, 10), (161, 0, 14), (162, 0, 15).

Next, we give a table of primitive polynomials over Fq, with prescribed
third coefficient, where q ≡ 0 (mod 3). Here F9 is defined as F3(α) and
F27 is defined as F3(β), where α and β are roots of x2 + 2x + 2 ∈ F3 and
x

3 + 2x+ 1 ∈ F3, respectively. Note that when n = 7, also the constant term
of the polynomial is required to be prescribed, but it necessarily equals 1.
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n a q = 3 q = 9 q = 27

1 x5 + x4 + x2 + 1 x5 + x2 + α —
2 x5 + 2x2 + x + 1 x5 + 2x2 + α + 2 —
α — x5 + αx2 + α —

5 α + 1 — x5 + (α + 1)x2 + α —
2α + 1 — x5 + (2α + 1)x2 + 2α + 1 —
2α + 2 — x5 + (2α + 2)x2 + 2α + 1 —
α + 2 — x5 + (α + 2)x2 + 2α + 1 —
2α — x5 + 2αx2 + α —

1 x6 + x3 + x + 2 x6 + x3 + x2 + x + α —
2 x6 + 2x3 + 2x + 2 x6 + 2x3 + x2 + 2x + α —
α — x6 + αx3 + x2 + 2α + 2 —

α + 1 — x6 + (α + 1)x3 + x2 + α —
6 2α + 1 — x6+(2α + 1)x3+x2+(α + 2)x+α+1 —

2α + 2 — x6 + (2α + 2)x3 + x2 + α —
α + 2 — x6+(α + 2)x3+x2+(2α + 1)x+α+1 —
2α — x6 + 2αx3 + x2 + 2α + 2 —
0 x6 + x + 2 x6 + x2 + αx + α x6+x+β

7 1 x7 + x6 + x3 + 2x2 — —
+x + 1

2 x7 + x6 + 2x3 + x2 — —
+2x + 1

Now we give a complete list of polynomials with fourth coefficient pre-
scribed, as required. The tables relating to fields of odd characteristic follow.
Here are the tables:

a 6= 0
a q = 3 q = 5 q = 7

1 x8 + x5 + x4 + 2x2 + 2 x8 + x5 + x4 + 3x + 3 x8 + x5 + x4 + x + 5
2 x8 + 2x5 + x4 + 2x2 + 2 x8 + 2x5 + x4 + x + 3 x8 + 2x5 + x4 + 2x + 5
3 — x8 + 3x5 + x4 + 4x + 3 x8 + 3x5 + x4 + 5
4 — x8 + 4x5 + x4 + 2x + 3 x8 + 4x5 + x4 + 5
5 — — x8 + 5x5 + x4 + 5x + 5
6 — — x8 + 6x5 + x4 + 6x + 5

a = 0
q = 3 x8 + x3 + 2
q = 5 x8 + x3 + 2x2 + 2
q = 7 x8 + x3 + 3x2 + 3
q = 9 x8 + (2α + 2)x4 + (α + 2)x + 2α + 2
q = 11 x8 + 2x3 + x2 + 2
q = 13 x8 + x3 + x2 + 2
q = 17 x8 + 2x3 + x2 + 3
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Lastly, here is the corresponding table for fields of even characteristic. The
field F4 is defined as F2(α) and F8 is defined as F2(β), where α and β are
roots of x2 + x+ 1 ∈ F2 and x3 + x

2 + 1 ∈ F2, respectively.

a q = 2 q = 4 q = 8

1 x8 + x5 + x3 + x2 + x + 1 x8 + x5 + x2 + x + α —
α — x8 + αx5 + (α + 1)x2 + α —

α + 1 — x8 + (α + 1)x5 + αx2 + α —
x8 + (β2 + β)x6

0 x8 + x7 + x2 + x + 1 x8 + x7 + x2 + x + α +(β2 + β + 1)x4

+(β2 + β)x3

+β2x2 + βx + β
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AN INEQUALITY FOR THE MULTIPLICITY OF THE

ROOTS OF A POLYNOMIAL

ARTŪRAS DUBICKAS

Abstract. We give two inequalities in terms of the coefficients of a com-

plex polynomial which imply an upper bound on the maximal multiplicity

of its roots. In particular, for f(x) = a0 + a1x + · · · + anxn ∈ C[x],

where a0an 6= 0, our result implies that if n|a0| >
∑

n−1

i=1
i|an−i| and

n|an| >
∑

n−1

i=1
i|ai| then f is a separable polynomial. This condition is

best possible in the sense that the conclusion on f is no longer true if the

first inequality is not strict. More generally, if there is a positive integer

k < n such that
(

n

k

)

|a0| >
∑

n−1

i=k

(

i

k

)

|an−i| and
(

n

k

)

|an| >
∑

n−1

i=k

(

i

k

)

|ai|
then the multiplicity of each root of f is 6 k. This result sharpens a

corresponding result of A.I. Bonciocat, N.C. Bonciocat and A. Zaharescu.

1. Introduction

Let f(x) = a0+a1x+· · ·+an−1x
n−1+anx

n
, where a0an 6= 0 be a polynomial

with complex coefficients. Suppose that

f(x) = an(x − α1)
n1(x − α2)

n2 . . . (x − αm)nm ,

where α1, . . . , αm are distinct roots of f and n1, . . . , nm are positive integers
satisfying n1 + · · ·+nm = n. Set e(f) = max{n1, . . . , nm}. Recently, A.I. Bon-
ciocat, N.C. Bonciocat and A. Zaharescu [1] proved that if j and k are two
nonnegative integers satisfying 0 6 j < k < n,

|aj| >

n
∑

i=j+1

(

i

j

)

|ai| and

(

n

k

)

|an| >

n−1
∑

i=k

(

i

k

)

|ai| , (1)

then e(f) 6 k. The strongest version of their theorem is obtained when j = 0 :
if

|a0| >

n
∑

i=1

|ai| and

(

n

k

)

|an| >

n−1
∑

i=k

(

i

k

)

|ai| , (2)

then e(f) 6 k. Finally, putting k = 1 into (2), they observed (see Corollary
1 in [1]) that the conditions

|a0| >

n
∑

i=1

|ai| and n|an| >

n−1
∑

i=1

i|ai| (3)
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imply that the polynomial f is separable.
In the proof of these and other, more technical, results, the authors of

[1] use certain Hadamard’s and Ostrowski’s conditions for nonvanishing of
determinants which represent certain resultants of the derivatives of f. We
remark that one can give a very simple proof of the results quoted above as
follows.

Suppose that e(f) > k. Then there is a complex number α 6= 0 such that
f(α) = f

′(α) = · · · = f
(k)(α) = 0. For j 6 k, we have

f
(j)(α)

j!
= aj +

(

j + 1

j

)

aj+1α +

(

j + 2

j

)

aj+2α
2 + · · ·+

(

n

j

)

anα
n−j = 0.

So, by the first inequality of (1), we deduce that

n
∑

i=j+1

(

i

j

)

|ai| < |aj| =

∣

∣

∣

∣

∣

−
n

∑

i=j+1

(

i

j

)

aiα
i−j

∣

∣

∣

∣

∣

6 max{1, |α|}n−j

n
∑

i=j+1

(

i

j

)

|ai|.

Since
∑n

i=j+1

(

i

j

)

|ai| > |an| > 0, we obtain that max{1, |α|} > 1, so |α| > 1.

Similarly, f
(k)(α)/k! =

∑n
i=k

(

i

k

)

aiα
i−k = 0 implies that

(

n

k

)

an = −

n−1
∑

i=k

(

i

k

)

aiα
i−n

,

so at least one of the numbers ak, . . . , an−1 is nonzero. Using the second
inequality of (1), we derive that

∑n−1

i=k

(

i

k

)

|ai| <
(

n

k

)

|an| =
∣

∣−
∑n−1

i=k

(

i

k

)

aiα
i−n

∣

∣

6 max{|α|−1
, |α|k−n}

∑n−1

i=k

(

i

k

)

|ai| .

As
∑n−1

i=k

(

i

k

)

|ai| > 0, this yields max{|α|−1
, |α|k−n} > 1, i.e., |α| < 1, contrary

to |α| > 1. Since the assumption e(f) > k leads to a contradiction, we
conclude that e(f) 6 k.

Of course, e(f) = e(f ∗), where f
∗(x) = an + an−1x + · · · + a0x

n is the
polynomial reciprocal to f (whose coefficients are written in reverse order).
However, none of the conditions (1)–(3) is ‘symmetric’ with respect to the
coefficients a0, . . . , an of f and the coefficients an, . . . , a0 of f

∗
. Moreover, for

instance, the second inequality of (3), i.e., n|an| >
∑n−1

i=1
i|ai| implies that |an|

is ‘large’, so, by the first inequality of (3), |a0| > |a1| + · · · + |an|, the first
coefficient |a0| is even greater than |an|. It seems very likely that this signals
the fact that the first inequality of (3) is not sharp, so that it can be replaced
by a weaker condition. This turns out to be the case.

The aim of this note is to settle both problems (‘symmetry’ and ‘sharpness’)
described above. The following theorem gives the same conclusion e(f) 6 k

under a weaker assumption. This assumption is given by two symmetric
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inequalities. It is not only less restrictive than the corresponding condition
of [1], but is also best possible, at least when k = 1 and k = n − 1.

Theorem 1. Let f(x) = a0 + a1x + · · · + anx
n ∈ C[x], where a0an 6= 0, and

let k < n be a positive integer. If

(

n

k

)

|a0| >

n−1
∑

i=k

(

i

k

)

|an−i| and

(

n

k

)

|an| >

n−1
∑

i=k

(

i

k

)

|ai| (4)

then e(f) 6 k. Moreover, one of the inequalities > in (4) (but, for k ∈
{1, n − 1}, not both!) can be replaced by > .

For k = 1 the condition (4) becomes

n|a0| > (n − 1)|a1| + · · · + 2|an−2| + |an−1|
and n|an| > (n − 1)|an−1| + · · ·+ 2|a2| + |a1| .

(5)

Obviously, the first inequality of (5) is a weaker restriction on |a0| then the
one given by the first inequality of (3). So Theorem 1 with k = 1 strengthens
Corollaries 1 and 2 of [1].

Theorem 1 asserts that the inequalities in (5) cannot be replaced by equal-
ities. Indeed, put

f(x) = 1 − x − x
n−1 + x

n = (1 − x)(1 − x
n−1)

for any integer n > 2. It is easy to see that then

n|a0| = n|an| =
n−1
∑

i=1

i|ai| =
n−1
∑

i=1

i|an−i| = n ,

but e(f) = 2, because f has a double root at x = 1 and n − 2 other distinct
roots on the unit circle. Thus the inequality e(f) 6 1, i.e., the conclusion
that f is separable, does not follow from the inequalities

n|a0| >

n−1
∑

i=1

i|an−i| and n|an| >

n−1
∑

i=1

i|ai|.

Similarly, if k = n − 1, put f(x) = (1 − x)n
. Then (4) becomes n|a0| > |a1|

and n|an| > |an−1|. For f(x) = (1 − x)n
, we have

n|a0| = n|an| = |a1| = |an−1| = n

and e(f) = n > k. This proves that the inequalities n|a0| > |a1| and n|an| >

|an−1| do not imply that e(f) 6 n − 1. The remaining part of the proof of
Theorem 1 will be given in the next section.

Note that

ci,k,n =

(

i

k

)

(

n

k

) =
i(i − 1) . . . (i − k + 1)

n(n − 1) . . . (n − k + 1)
< 1 ,
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so the first inequality of (4),

|a0| >

n−1
∑

i=1

ci,k,n|an−i| ,

is a weaker restriction on |a0| than the corresponding inequality of (2), namely,
|a0| >

∑n

i=1
|ai|. In fact, the weights ci,k,n are ‘close’ to zero if i is ‘small’.

2. Proof of Theorem 1

We shall summarize our argument given in the introduction as follows:

Lemma 2. Let f(x) = a0 + a1x + · · · + anx
n ∈ C[x], where a0an 6= 0.

Suppose that k < n is a positive integer and α is a complex number such

that (x − α)k+1 | f(x). If
(

n

k

)

|an| >
∑n−1

i=k

(

i

k

)

|ai| then |α| 6 1. Similarly, if
(

n

k

)

|an| >
∑n−1

i=k

(

i

k

)

|ai| then |α| < 1.

Proof of the lemma: It is clear first of all that α 6= 0. Thus the equation
f

(k)(α)/k! =
∑n

i=k

(

i

k

)

aiα
i−k = 0 yields

(

n

k

)

|an| =

∣

∣

∣

∣

∣

−

n−1
∑

i=k

(

i

k

)

aiα
i−n

∣

∣

∣

∣

∣

6 max{|α|−1
, |α|k−n}

n−1
∑

i=k

(

i

k

)

|ai|.

Moreover, at least one of the numbers ak, . . . , an−1 is nonzero, as an 6= 0.
Now,

(

n

k

)

|an| >
∑n−1

i=k

(

i

k

)

|ai| > 0 implies that max{|α|−1
, |α|k−n} > 1, giv-

ing |α| 6 1. Similarly, strict inequality
(

n

k

)

|an| >
∑n−1

i=k

(

i

k

)

|ai| implies that

max{|α|−1
, |α|k−n} > 1, i.e., |α| < 1. �

Proof of Theorem 1: Suppose that e(f) > k + 1. Then there is a nonzero
complex number α such that (x−α)k+1|f(x). Suppose that both inequalities
(

n

k

)

|an| >
∑n−1

i=k

(

i

k

)

|ai| and
(

n

k

)

|a0| >
∑n−1

i=k

(

i

k

)

|an−i| hold. Then Lemma 2
implies that |α| 6 1.

On the other hand (x − β)k+1 | f
∗(x), where β = α

−1 6= 0 and

f
∗(x) = b0 + b1x + · · ·+ bnx

n = an + an−1x + · · ·+ a0x
n
.

Here, bi = an−i for i = 0, . . . , n. Now, by Lemma 2 and the inequality

(

n

k

)

|bn| =

(

n

k

)

|a0| >

n−1
∑

i=k

(

i

k

)

|an−i| =
n−1
∑

i=k

(

i

k

)

|bi|,

we obtain that |β| < 1. Hence |α| = |β−1| > 1, a contradiction with |α| 6 1.

In the case when
(

n

k

)

|an| >
∑n−1

i=k

(

i

k

)

|ai| and
(

n

k

)

|a0| >
∑n−1

i=k

(

i

k

)

|an−i| one
obtains that |α| < 1 and |α| > 1, respectively, a contradiction again. This
completes the proof of the theorem. �



Artūras Dubickas 125

3. Polynomials with integer coefficients

In conclusion, by the same, but p-adic argument, we shall give a p-adic
version of Theorem 1 for polynomials with integer coefficients.

Let p be a rational prime. For each nonzero r ∈ Q, let νp(r) be the
exponent of p in the prime decomposition of r. Put νp(0) = ∞. Suppose that
f(x) = a0 + a1x + · · · + anx

n ∈ Z[x], where a0an 6= 0. Proposition 5 of [1]
implies that if there is a prime number p such that

νp(a0) 6 min
16i6n

νp(ai) and νp

(

(

n

k

)

an

)

< min
k6i6n−1

νp

(

(

i

k

)

ai

)

,

then e(f) 6 k. This condition is a p-adic analogue of (2). As above, it is not
symmetric. We give a corresponding symmetric condition which implies the
same conclusion e(f) 6 k.

Theorem 3. Let f(x) = a0 + a1x + · · · + anx
n ∈ Z[x], where a0an 6= 0, and

let k < n be a positive integer. If

νp

(

(

n

k

)

a0

)

6 mink6i6n−1 νp

(

(

i

k

)

an−i

)

and νp

(

(

n

k

)

an

)

< mink6i6n−1 νp

(

(

i

k

)

ai

)

,

(6)

then e(f) 6 k.

Proof: Let us define the absolute value | · |p of a rational number r as |r|p =
p
−νp(r)

. In contrast to the usual absolute value, | · |p is called an ultrametric

absolute value. It can be extended to a number field K. (See, for instance,
Ch. 12 in [2] or Ch. 3 in [3].) It satisfies |ββ

′|p = |β|p|β
′|p and

|β + β
′|p 6 max{|β|p, |β

′|p},

where β, β
′ ∈ K. (Compare with the inequality |β + β

′| 6 |β| + |β ′| for the
usual absolute value | · |.)

Let K be a number field containing all the roots of f(x) ∈ Z[x]. Suppose
that e(f) > k. Then, as above, there is an α ∈ K such that

(

n

k

)

an = −
n−1
∑

i=k

(

i

k

)

aiα
i−n

.

Hence
∣

∣

∣

∣

(

n

k

)

an

∣

∣

∣

∣

p

6 max
k6i6n−1

∣

∣

∣

∣

(

i

k

)

aiα
i−n

∣

∣

∣

∣

p

6 max
k6i6n−1

∣

∣

∣

∣

(

i

k

)

ai

∣

∣

∣

∣

p

max{|αk−n|p, |α
−1|p} .

Using |r|p = p
−νp(r)

, by the second inequality of (6), we obtain that

1 < max{|αk−n|p, |α
−1|p}.
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Hence |α|p < 1. Similarly, by considering the reciprocal polynomial f
∗(x) =

an + an−1x + · · · + a0x
d with the root α

−1 ∈ K of multiplicity > k + 1, from
the first inequality in (6) we obtain that 1 6 |α|p, a contradiction. �

We remark that the inequalities > and > in (6) can be replaced by > and
>, respectively, with the same conclusion e(f) 6 k.

Finally, suppose that a0, an and n are all odd. Then, taking p = 2, we
obtain from Theorem 3 that if the numbers a1, a3, . . . , an−2 are all even then
the polynomial f(x) = a0 + a1x + · · ·+ anx

n ∈ Z[x] is separable.

This research was supported in part by the Lithuanian State Studies and
Science Foundation.
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NEWMAN’S INEQUALITY FOR INCREASING

EXPONENTIAL SUMS

TAMÁS ERDÉLYI

DEDICATED TO THE MEMORY OF GEORGE G. LORENTZ

Abstract. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers.

The collection of all linear combinations of eλ0t, eλ1t, . . . , eλnt over R will

be denoted by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .

Elements of E(Λn) are called exponential sums of n+1 terms. Let ‖f‖[a,b]

denote the uniform norm of a real valued function f defined on [a, b]. We

prove the following results.

Theorem 1. Let n ≥ 2 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be
a set of nonnegative real numbers, b ∈ R. There is an absolute constant
c1 > 0 such that

c1

log n

n∑
j=0

λj ≤ sup
P

‖P ′‖(−∞,b]

‖P‖(−∞,b]

≤ 9

n∑
j=0

λj ,

where the supremum is taken for all 0 6= P ∈ E(Λn) increasing on (−∞,∞).

Theorem 2. Let n ≥ 2 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be
a set of real numbers. Let [a, b] be a finite interval with length b − a > 0.
There are positive constants c2 = c2(a, b) and c3 = c3(a, b) depending only
on a and b such that

c2


n2 +

1

log n

n∑
j=0

|λj |


 ≤ sup

P

‖P ′‖[a,b]

‖P‖[a,b]

≤ c3


n2 +

n∑
j=0

|λj |


 ,

where the supremum is taken for all 0 6= P ∈ E(Λn) increasing on (−∞,∞).

It is expected that the factor 1/ logn in the above theorems can be

dropped.

1. Introduction and Notation

Throughout the paper [a, b] denotes a finite interval of length b − a > 0.
The Markov inequality asserts that

‖p′‖[−1,1] ≤ n
2‖p‖[−1,1]

2000 Mathematics Subject Classification. Primary 41A17.

Key words and phrases. Markov inequality, Newman inequality, increasing exponential

sums .
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for all polynomials of degree at most n (with real coefficients). Here, and in
what follows ‖f‖[a,b] denotes the uniform norm of a real valued function f

defined on [a, b].
It has been observed by Bernstein that Markov’s inequality for monotone

polynomials is not essentially better than that for all polynomials. He proved
that

sup
p

‖p′‖[−1,1]

‖p‖[−1,1]

=

{
1

4
(n + 1)2

, if n is odd ,

1

4
n(n + 2) , if n is even ,

where the supremum is taken for all polynomials 0 6= p of degree at most n

that are monotone on [−1, 1]. See [16, p. 607], for instance.
In his book [2] Braess writes “The rational functions and exponential sums

belong to those concrete families of functions which are the most frequently
used in nonlinear approximation theory. The starting point of consideration
of exponential sums is an approximation problem often encountered for the
analysis of decay processes in natural sciences. A given empirical function on
a real interval is to be approximated by sums of the form

n∑

j=1

aje
λjt

,

where the parameters aj and λj are to be determined, while n is fixed.”
Let

En :=

{
f : f(t) = a0 +

n∑

j=1

aje
λjt

, aj, λj ∈ R

}
.

So En is the collection of all n + 1 term exponential sums with constant first
term. Schmidt [17] proved that there is a constant c(n) depending only on n

so that

‖f ′‖[a+δ,b−δ] ≤ c(n)δ−1‖f‖[a,b]

for every f ∈ En and δ ∈
(
0, 1

2
(b − a)

)
. The main result, Theorem 3.2, of [5]

shows that Schmidt’s inequality holds with c(n) = 2n − 1. That is,

sup
06=f∈En

|f ′(y)|

‖f‖[a,b]

≤
2n − 1

min{y − a, b − y}
, y ∈ (a, b) . (1)

In this Bernstein-type inequality even the point-wise factor is sharp up to a
multiplicative absolute constant; the inequality

1

e − 1

n − 1

min{y − a, b − y}
≤ sup

06=f∈En

|f ′(y)|

‖f‖[a,b]

, y ∈ (a, b) ,

is established by Theorem 3.3 in [5].
Bernstein-type inequalities play a central role in approximation theory via

a machinery developed by Bernstein, which turns Bernstein-type inequali-
ties into inverse theorems of approximation. See, for example, the books by
Lorentz [14] and by DeVore and Lorentz [9]. From (1) one can deduce in a
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standard fashion that if there is a sequence (fn)∞n=1
of exponential sums with

fn ∈ En that approximates g on an interval [a, b] uniformly with errors

‖g − fn‖[a,b] = O
(
n
−m(log n)−2

)
, n = 2, 3, . . . ,

where m ∈ N is a fixed integer, then g is m times continuously differentiable
on (a, b). Let Pn be the collection of all polynomials of degree at most n with
real coefficients. Inequality (1) can be extended to En replaced by

Ẽn :=

{
f : f(t) = a0 +

N∑

j=1

Pmj
(t)eλj t

, Pmj
∈ Pmj

,

N∑

j=1

(mj + 1) ≤ n

}
,

where a0, λj ∈ R. In fact, it is well-known that Ẽn is the uniform closure
of En on any finite subinterval of the real number line. For a real valued
function f defined on a set A let

‖f‖A := ‖f‖L∞A := ‖f‖L∞(A) := sup
x∈A

|f(x)| ,

and let

‖f‖LpA := ‖f‖Lp(A) :=

(∫

A

|f(x)|p dx

)
1/p

, p > 0 ,

whenever the Lebesgue integral exists.
In this paper we make an effort to show that Newman’s inequality (Theorem

2.1) for exponential sums on (−∞, b] and its extension to finite intervals [a, b]
(the case p = ∞ in Theorem 2.3) remain essentially sharp even if we consider
only increasing exponential sums on the real number line.

2. Some Recent Results

Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. The collection
of all linear combinations of e

λ0t
, e

λ1t
, . . . , e

λnt over R will be denoted by

E(Λn) := span{eλ0t
, e

λ1t
, . . . , e

λnt} .

Elements of E(Λn) are called exponential sums of n + 1 terms. Newman’s
inequality (see [3] and [15]) is an essentially sharp Markov-type inequality for
E(Λn) on (−∞, 0] in the case when each λj is nonnegative.

Theorem 2.1. (Newman’s Inequality) Let Λn := {λ0 < λ1 < · · · < λn} be a

set of nonnegative real numbers. Let b ∈ R. We have

2

3

n∑

j=0

λj ≤ sup
06=P∈E(Λn)

‖P ′‖(−∞,b]

‖P‖(−∞,b]

≤ 9
n∑

j=0

λj .

An Lp version of this is established in [3], [6], [8], and [10].
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Theorem 2.2. Let Λn := {λ0 < λ1 < · · · < λn} be a set of nonnegative real

numbers. Let 1 ≤ p ≤ ∞. Let b ∈ R. Then

‖P ′‖Lp(−∞,b] ≤ 9

(
n∑

j=0

λj

)
‖P‖Lp(−∞,b]

for every P ∈ E(Λn).

Note that in the above theorems the case b = 0 represents the general case.
This can be seen by the substitution u = t − b.

The following Lp[a, b] (1 ≤ p ≤ ∞) analogue of Theorem 2.2 has been
established in [1].

Theorem 2.3. Let n ≥ 1 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be a

set of real numbers. Let 1 ≤ p ≤ ∞. There is a positive constant c4 = c4(a, b)
depending only on a and b such that

sup
06=P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lp[a,b]

≤ c4

(
n

2 +

n∑

j=0

|λj|

)
.

Theorem 2.3 was proved earlier in [4] and [10] under the additional assump-
tions that λj ≥ δj for each j with a constant δ > 0 and with c4 = c4(a, b)
replaced by c4 = c4(a, b, δ) depending only on a, b, and δ. The novelty of
Theorem 2.3 was the fact that Λn := {λ0 < λ1 < · · · < λn} is an arbitrary set
of real numbers, not even the nonnegativity of the exponents λj is needed.

In [11] the following Nikolskii-Markov type inequality has been proved for
E(Λn) on (−∞, 0].

Theorem 2.4. Suppose 0 < q ≤ p ≤ ∞. Let Λn := {λ0 < λ1 < · · · < λn} be

a set of nonnegative real numbers. Let µ be a nonnegative integer. Let b ∈ R.

There are constants c5 = c5(p, q, µ) > 0 and c6 = c6(p, q, µ) > 0 depending

only on p, q, and µ such that

c5

(
n∑

j=1

λj

)µ+
1

q
− 1

p

≤ sup
06=P∈E(Λn)

‖P (µ)‖Lp(−∞,b]

‖P‖Lq(−∞,b]

≤ c6

(
n∑

j=1

λj

)µ+
1

q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞ and for all µ ≥ 0, while

the upper bound holds when µ = 0 and 0 < q ≤ p ≤ ∞, and when µ ≥ 1,
p ≥ 1, and 0 < q ≤ p ≤ ∞. Also, there are constants c5 = c5(q, µ) > 0 and

c6 = c6(q, µ) > 0 depending only on q and µ such that

c5

(
n∑

j=1

λj

)µ+
1

q

≤ sup
06=P∈E(Λn)

|P (µ)(y)|

‖P‖Lq(−∞,y]

≤ c6

(
n∑

j=1

λj

)µ+
1

q

holds for every y ∈ R.

Motivated by a question of Michel Weber (Strasbourg) in [13] we proved
the following couple of theorems.
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Theorem 2.5. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers.

Suppose 0 < q ≤ p ≤ ∞. There are constants c7 = c7(p, q, a, b) > 0 and

c8 = c8(p, q, a, b) > 0 depending only on p, q, a, and b such that

c7

(
n

2 +

n∑

j=1

|λj|

) 1

q
− 1

p

≤ sup
06=P∈E(Λn)

‖P‖Lp[a,b]

‖P‖Lq[a,b]

≤ c8

(
n

2 +

n∑

j=1

|λj|

) 1

q
− 1

p

.

Theorem 2.6. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers.

Suppose 0 < q ≤ p ≤ ∞. There are constants c9 = c9(p, q, a, b) > 0 and

c10 = c10(p, q, a, b) > 0 depending only on p, q, a, and b such that

c9

(
n

2 +

n∑

j=1

|λj|

)1+
1

q
− 1

p

≤ sup
06=P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lq [a,b]

≤ c10

(
n

2 +

n∑

j=1

|λj|

)1+
1

q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞, while the upper bound

holds when p ≥ 1 and 0 < q ≤ p ≤ ∞.

The lower bounds in these inequalities were shown by a method with the
Pinkus-Smith Improvement Theorem in the centre. We formulate the useful
lemmas applied in the proofs of these lower bounds. To emphasize the power
of the technique of interpolation, we present the short proofs of these lemmas,
versions of which will be used in the proofs of our new results. We also note
that essentially sharp Bernstein-type inequalities for linear combinations of
shifted Gaussians are proved in [12].

In fact, a closer look at the proof of Theorems 2.5 and 2.6 presented in [13]
gives the following results.

Theorem 2.5*. Suppose 0 ≤ λ0 < λ1 < · · · < λn, 0 < q ≤ ∞. There are

constants c7 = c7(q, a, b) > 0 and c8 = c8(q, a, b) > 0 such that

c7

(
n

2 +
n∑

j=1

λj

) 1

q

≤ sup
06=P∈E(Λn)

|P (b)|

‖P‖Lq[a,b]

≤ c8

(
n

2 +
n∑

j=1

λj

) 1

q

.

Theorem 2.5**. Suppose λ0 < λ1 < · · · < λn ≤ 0, 0 < q ≤ ∞. There are

constants c7 = c7(q, a, b) > 0 and c8 = c8(q, a, b) > 0 such that

c7

(
n

2 +
n∑

j=1

|λj|

) 1

q

≤ sup
06=P∈E(Λn)

|P (a)|

‖P‖Lq[a,b]

≤ c8

(
n

2 +
n∑

j=1

|λj|

) 1

q

.

Theorem 2.6*. Suppose 0 ≤ λ0 < λ1 < · · · < λn, 0 < q ≤ ∞. There are

constants c9 = c9(q, a, b) > 0 and c10 = c10(q, a, b) > 0 such that

c9

(
n

2 +

n∑

j=1

λj

)
1+

1

q

≤ sup
06=P∈E(Λn)

|P ′(b)|

‖P‖Lq[a,b]

≤ c10

(
n

2 +

n∑

j=1

|λj|

)
1+

1

q

.
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Theorem 2.6**. Suppose λ0 < λ1 < · · · < λn ≤ 0, 0 < q ≤ ∞. There are

constants c9 = c9(q, a, b) > 0 and c10 = c10(q, a, b) > 0 such that

c9

(
n

2 +

n∑

j=1

|λj|

)1+
1

q

≤ sup
06=P∈E(Λn)

|P ′(a)|

‖P‖Lq [a,b]

≤ c10

(
n

2 +

n∑

j=1

|λj|

)1+
1

q

.

3. New Results

We make an effort to show that Newman’s inequality (Theorem 2.1) on
(−∞, b] and its extension to finite intervals [a, b] with length b − a > 0 (the
case p = ∞ in Theorem 2.3) remain essentially sharp even if we consider only
increasing exponential sums on the real number line.

Theorem 3.1. Let n ≥ 2 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be

a set of positive real numbers, b ∈ R. There is an absolute constant c1 > 0
such that

c1

log n

n∑

j=0

λj ≤ sup
P

‖P ′‖(−∞,b]

‖P‖(−∞,b]

≤ 9

n∑

j=0

λj ,

where the supremum is taken for all 0 6= P ∈ E(Λn) increasing on (−∞,∞).

Theorem 3.2. Let n ≥ 2 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be a

set of real numbers. There are positive constants c2 = c2(a, b) and c3 = c3(a, b)
depending only on a and b such that

c2

(
n

2 +
1

log n

n∑

j=0

|λj|

)
≤ sup

P

‖P ′‖[a,b]

‖P‖[a,b]

≤ c3

(
n

2 +

n∑

j=0

|λj|

)
,

where the supremum is taken for all 0 6= P ∈ E(Λn) increasing on (−∞,∞).

It is expected that the factor 1/ log n in the above theorems can be dropped.

4. Lemmas

Let q ∈ (0,∞] and let w be a not identically zero continuous function
defined on [a, b]. Our first lemma can be proved by a simple compactness
argument and may be viewed as a simple exercise.

Lemma 4.1. Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real numbers. Let

c ∈ [b,∞). There exists a 0 6= T ∈ E(∆n) such that

|T (c)|

‖Tw‖Lq[a,b]

= sup
06=P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]

,

and there exists a 0 6= S ∈ E(∆n) such that

|S ′(c)|

‖Sw‖Lq[a,b]

= sup
06=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq[a,b]

.
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Our next lemma is an essential tool in proving our key lemmas, Lemmas
4.3 and 4.4.

Lemma 4.2. Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real numbers. Let

c ∈ (b,∞). Let T and S be the same as in Lemma 4.1. Then T has exactly

n zeros in [a, b], counted with multiplicity. Under the additional assumption

δn ≥ 0, S also has exactly n zeros in [a, b], counted with multiplicity.

The heart of the proof of our theorems is the following pair of comparison
lemmas. The proof of the next couple of lemmas is based on basic properties
of Descartes systems, in particular on Descartes’ Rule of Signs, and on a
technique used earlier by P.W. Smith and Pinkus. Lorentz ascribes this result
to Pinkus, although it was P.W. Smith [18] who published it. I have learned
about the method of proof of these lemmas from Peter Borwein, who also
ascribes it to Pinkus. This is the proof we present here. Section 3.2 of [3],
for instance, gives an introduction to Descartes systems. Descartes’ Rule of
Signs is stated and proved on page 102 of [3].

Lemma 4.3. Let ∆n := {δ0 < δ1 < · · ·< δn} and Γn := {γ0 < γ1 < · · ·< γn}
be sets of real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n. Let c ∈
[b,∞). We have

sup
06=P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]

≤ sup
06=P∈E(Γn)

|P (c)|

‖Pw‖Lq[a,b]

.

Under the additional assumption δn ≥ 0 we also have

sup
06=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq[a,b]

≤ sup
06=P∈E(Γn)

|P ′(c)|

‖Pw‖Lq[a,b]

.

In addition, the above inequalities hold if the supremums are taken over all

nonnegative not identically zero P ∈ E(∆n) and P ∈ E(Γn), respectively.

The result below follows from Lemma 4.3 by a standard compactness ar-
gument.

Lemma 4.3*. The statements of Lemma 4.3 remain valid if δ0 > 0, the in-

terval [a, b] is replaced by (−∞, b], and w is a not identically zero, continuous,

and bounded function on (−∞, b].

Lemma 4.4. Let ∆n := {δ0 < δ1 < · · ·< δn} and Γn := {γ0 < γ1 < · · ·< γn}
be sets of real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n. Let c ∈
(−∞, a]. We have

sup
06=P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]

≥ sup
06=P∈E(Γn)

|P (c)|

‖Pw‖Lq[a,b]

.

Under the additional assumption γ0 ≤ 0 we also have

sup
06=P∈E(∆n)

|Q′(c)|

‖Qw‖Lq [a,b]

≥ sup
06=P∈E(Γn)

|Q′(c)|

‖Qw‖Lq[a,b]

.
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In addition, the above inequalities hold if the supremums are taken over all

nonnegative not identically zero P ∈ E(∆n) and P ∈ E(Γn), respectively.

The result below follows from Lemma 4.4 by a standard compactness ar-
gument.

Lemma 4.4*. The statements of Lemma 4.4 remain valid if γn < 0, the

interval [a, b] is replaced by [a,∞), and w is a not identically zero, continuous,

and bounded function on [a,∞).

5. Proofs of the Lemmas

Proof of Lemma 4.1. Since ∆n is fixed, the proof is a standard compactness
argument. We omit the details. �

To prove Lemma 4.2 we need the following two facts:
(a) every 0 6= f ∈ E(∆n) has at most n real zeros, counted with multiplic-

ity;
(b) if t1 < t2 < · · · < tm are real numbers and k1, k2, . . . , km are positive

integers such that
∑m

j=1
kj = n, then there is a 0 6= f ∈ E(∆n) having a zero

at tj with multiplicity kj for each j = 1, 2, . . . , m.

Proof of Lemma 4.2. We prove the statement for T first. Suppose to the
contrary that t1 < t2 < · · · < tm are real numbers in [a, b] such that tj is a
zero of T with multiplicity kj for each j = 1, 2, . . . , m, k :=

∑m
j=1

kj < n, and

T has no other zeros in [a, b] different from t1, t2, . . . , tm. Let tm+1 := c and
km+1 := n− k ≥ 1. Choose 0 6= R ∈ E(∆n) such that R has a zero at tj with
multiplicity kj for each j = 1, 2, . . . , m + 1, and normalize so that T (t) and
R(t) have the same sign at every t ∈ [a, b]. Let Tε := T − εR. Note that T

and R are of the form

T (t) = T̃ (t)

m∏

j=1

(t − tj)
kj and R(t) = R̃(t)

m∏

j=1

(t − tj)
kj ,

where both T̃ and R̃ are continuous functions on [a, b] having no zeros on
[a, b]. Hence, if ε > 0 is sufficiently small, then |Tε(t)| < |T (t)| at every
t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Tεw‖Lq [a,b] < ‖Tw‖Lq[a,b] .

This, together with Tε(c) = T (c), contradicts the maximality of T .
Now we prove the statement for S. Without loss of generality we may

assume that S
′(c) > 0. Suppose to the contrary that t1 < t2 < · · · < tm are

real numbers in [a, b] such that tj is a zero of S with multiplicity kj for each
j = 1, 2, . . . , m, k :=

∑m

j=1
kj < n, and S has no other zeros in [a, b] different

from t1, t2, . . . , tm. Choose

0 6= Q ∈ span{eδn−kt
, e

δn−k+1t
, . . . , e

δnt} ⊂ E(∆n)
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such that Q has a zero at tj with multiplicity kj for each j = 1, 2, . . . , m, and
normalize so that S(t) and Q(t) have the same sign at every t ∈ [a, b]. Note
that S and Q are of the form

S(t) = S̃(t)

m∏

j=1

(t − tj)
kj and Q(t) = Q̃(t)

m∏

j=1

(t − tj)
kj ,

where both S̃ and Q̃ are continuous functions on [a, b] having no zeros on
[a, b]. Let tm+1 := c and km+1 := 1. Choose

0 6= R ∈ span{eδn−k−1t
, e

δn−kt
, . . . , e

δnt} ⊂ E(∆n)

such that R has a zero at tj with multiplicity kj for each j = 1, 2, . . . , m + 1,
and normalize so that S(t) and R(t) have the same sign at every t ∈ [a, b].
Note that S and R are of the form

S(t) = S̃(t)

m∏

j=1

(t − tj)
kj and R(t) = R̃(t)

m∏

j=1

(t − tj)
kj ,

where both S̃ and R̃ are continuous functions on [a, b] having no zeros on
[a, b]. It can be easily seen that δn ≥ 0 implies that Q

′(t) does not vanish
on (tm,∞) (divide by e

δnt and then use Rolle’s Theorem). Similarly, since
δn ≥ 0, it is easy to see that if Q

′ is positive on (tm,∞), then R
′ is negative

on (c,∞). Hence Q
′(c)R′(c) < 0, so the sign of Q

′(c) is different from the
sign of R

′(c). Let U := Q if Q
′(c) < 0 and let U := R if R

′(c) < 0. Let
Sε := S − εU . Hence, if ε > 0 is sufficiently small, we have |Sε(t)| < |T (t)| at
every t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Sεw‖Lq [a,b] < ‖Sw‖Lq[a,b] .

This, together with S
′
ε(c) > S

′(c) > 0, contradicts the maximality of S. �

Proof of Lemma 4.3. We begin with the first inequality. We may assume that
a < b < c. The general case when a < b ≤ c follows by a standard continuity
argument. Let k ∈ {0, 1, . . . , n} be fixed and let

γ0 < γ1 < · · · < γn , γj = δj , j 6= k , and δk < γk < δk+1

(let δn+1 := ∞). To prove the lemma it is sufficient to study the above
cases since the general case follows from this by a finite number of pairwise
comparisons. By Lemmas 4.1 and 4.2, there exists 0 6= T ∈ E(∆n) such that

|T (c)|

‖Tw‖Lq[a,b]

= sup
06=P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]

,

where T has exactly n zeros in [a, b], counted with multiplicity. Denote the
distinct zeros of T in [a, b] by t1 < t2 < · · · < tm, where tj is a zero of T with



136 Inequalities for exponential sums

multiplicity kj for each j = 1, 2, . . . , m, and
∑m

j=1
kj = n. Then T has no

other zeros in R different from t1, t2, . . . , tm. Let

T (t) =:

n∑

j=0

aje
δj t

, aj ∈ R .

Without loss of generality we may assume that T (c) > 0. Now T (t) > 0 for
every t > c, otherwise, in addition to its n zeros in [a, b] (counted with multi-
plicity), T would have at least one more zero in (c,∞), which is impossible.
Hence

an := lim
t→∞

T (t)e−δnt ≥ 0 .

Since E(∆n) is the span of a Descartes system on (−∞,∞), it follows from
Descartes’ Rule of Signs that

(−1)n−j
aj > 0 , j = 0, 1, . . . , n .

So, in particular, an > 0. Choose R ∈ E(Γn) of the form

R(t) =
n∑

j=0

bje
γj t

, bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j = 1, 2, . . . , m, and
normalize so that R(c) = T (c)(> 0) (this R ∈ E(Γn) is uniquely determined).
Similarly to an ≥ 0 we have bn ≥ 0. Since E(Γn) is the span of a Descartes
system on (−∞,∞), Descartes’ Rule of Signs yields,

(−1)n−j
bj > 0 , j = 0, 1, . . . , n .

So, in particular, bn > 0. We have

(T − R)(t) = ake
δkt − bke

γkt +

n∑

j=0

j 6=k

(aj − bj)e
δj t

.

Since T −R has altogether at least n+1 zeros at t1, t2, . . . , tm, and c (counted
with multiplicity), it does not have any zero on R different from t1, t2, . . . , tm,
and c. Since

(eδ0t
, e

δ1t
, . . . , e

δkt
, e

γkt
, e

δk+1t
, . . . , e

δnt)

is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies that the
sequence

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, ak, −bk, ak+1 − bk+1, . . . , an − bn)

strictly alternates in sign. Since (−1)n−k
ak > 0, this implies that an − bn < 0

if k < n, and −bn < 0 if k = n, so

(T − R)(t) < 0 , t > c .

This can be seen by dividing the left hand side by e
γnt and taking the limit

as t → ∞. Since each of T , R, and T − R has a zero at tj with multiplicity
kj for each j = 1, 2, . . . , m;

∑m
j=1

kj = n, and T −R has a sign change (a zero
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with multiplicity 1) at c, we can deduce that each of T , R, and T − R has
the same sign on each of the intervals (tj, tj+1) for every j = 0, 1, . . . , m with
t0 := −∞ and tm+1 := c. Hence |R(t)| ≤ |T (t)| holds for all t ∈ [a, b] ⊂ [a, c]
with strict inequality at every t different from t1, t2, . . . , tm. Combining this
with R(c) = T (c), we obtain

|R(c)|

‖Rw‖Lq [a,b]

≥
|T (c)|

‖Tw‖Lq[a,b]

= sup
06=P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]

.

Since R ∈ E(Γn), the first conclusion of the lemma follows from this.
Now we start the proof of the second inequality of the lemma. Although

it is quite similar to that of the first inequality, we present the details. We
may assume that a < b < c and δn > 0. The general case when a < b ≤ c

and δn ≥ 0 follows by a standard continuity argument. Let k ∈ {0, 1, . . . , n}
be fixed and let

γ0 < γ1 < · · · < γn , γj = δj , j 6= k , and δk < γk < δk+1

(let δn+1 := ∞). To prove the lemma it is sufficient to study the above
cases since the general case follows from this by a finite number of pairwise
comparisons. By Lemmas 4.1 and 4.2, there exists 0 6= S ∈ E(∆n) such that

|S ′(c)|

‖Sw‖Lq[a,b]

= sup
06=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq[a,b]

,

where S has exactly n zeros in [a, b], counted with multiplicity. Denote the
distinct zeros of S in [a, b] by t1 < t2 < · · · < tm, where tj is a zero of S with
multiplicity kj for each j = 1, 2, . . . , m, and

∑m
j=1

kj = n. Then S has no
other zeros in R different from t1, t2, . . . , tm. Let

S(t) =:
n∑

j=0

aje
δj t

, aj ∈ R .

Without loss of generality we may assume that S(c) > 0. Since δn > 0, we
have limt→∞ S(t) = ∞, otherwise, in addition to its n zeros in (a, b), S would
have at least one more zero in (c,∞), which is impossible.

Because of the extremal property of S, S
′(c) 6= 0. We show that S

′(c) > 0.
To see this observe that Rolle’s Theorem implies that S

′ ∈ E(∆n) has at least
n−1 zeros in [t1, tm] (counted with multiplicity). If S

′(c) < 0, then S(tm) = 0
and limt→∞ S(t) = ∞ imply that S

′ has at least 2 more zeros in (tm,∞). Thus
S
′(c) < 0 would imply that S

′ has at least n + 1 zeros in [a,∞), which is
impossible. Hence S

′(c) > 0, indeed. Also an := limt→∞ S(t)e−δnt ≥ 0 .

Since E(∆n) is the span of a Descartes system on (−∞.∞), it follows from
Descartes’ Rule of Signs that

(−1)n−j
aj > 0 , j = 0, 1, . . . , n .
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So, in particular, an > 0. Choose R ∈ E(Γn) of the form

R(t) =
n∑

j=0

bje
γj t

, bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j = 1, 2, . . . , m, and
normalize so that R(c) = S(c)(> 0) (this R ∈ E(Γn) is uniquely determined).
Similarly to an ≥ 0 we have bn ≥ 0. Since E(Γn) is the span of a Descartes
system on [a, b], Descartes’ Rule of Signs implies that

(−1)n−j
bj > 0 , j = 0, 1, . . . , n .

So, in particular, bn > 0. We have

(S − R)(t) = ake
δkt − bke

γkt +

n∑

j=0

j 6=k

(aj − bj)e
δj t

.

Since S−R has altogether at least n+1 zeros at t1, t2, . . . , tm, and c (counted
with multiplicity), it does not have any zero on R different from t1, t2, . . . , tm,
and c. Since

(eδ0t
, e

δ1t
, . . . , e

δkt
, e

γkt
, e

δk+1t
, . . . , e

δnt)

is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies that the
sequence

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, ak, −bk, ak+1 − bk+1, . . . , an − bn)

strictly alternates in sign. Since (−1)n−k
ak > 0, this implies that an − bn < 0

if k < n and −bn < 0 if k = n, so

(S − R)(t) < 0 , t > c .

Since each of S, R, and S − R has a zero at tj with multiplicity kj for each
j = 1, 2, . . . , m;

∑m
j=1

kj = n, and S − R has a sign change (a zero with

multiplicity 1) at c, we can deduce that each of S, R, and S−R has the same
sign on each of the intervals (tj, tj+1) for every j = 0, 1, . . . , m with t0 := −∞
and tm+1 := c. Hence |R(t)| ≤ |S(t)| holds for all t ∈ [a, b] ⊂ [a, c] with
strict inequality at every t different from t1, t2, . . . , tm. Combining this with
0 < S

′(c) ≤ R
′(c) (recall that R(c) = S(c) > 0), we obtain

|R′(c)|

‖Rw‖Lq[a,b]

≥
|S ′(c)|

‖Sw‖Lq [a,b]

= sup
06=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq[a,b]

.

Since R ∈ E(Γn), the second conclusion of the lemma follows from this.
The proof of the last statement of the lemma is very similar. We omit the
details. �

Proof of Lemma 4.4. The lemma follows from Lemma 4.3 by the substitution
u = −t. �
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6. Proofs of the Theorems

Proof of Theorem 3.1. In the light of Theorem 2.1 we need to prove only the
lower bound. Moreover, it is sufficient to prove only that for every a < b

there exists 0 6= Q ∈ E(Λn) increasing on (−∞,∞) such that

|Q′(b)|

‖Q‖[a,b]

≥
c1

log n

n∑

j=0

λj

with an absolute constant c1 > 0, and the lower bound of the theorem follows
by a standard compactness argument. Let

λ :=
1

3 log n

n∑

j=0

λj .

Then there exists k ∈ {0, 1, . . . , n} such that

λk ≥
λ

n − k + 1
.

Let ε > 0, m := bn−k
2
c,

δ̃j :=
λ

2(n − k + 1)
+ jε , j = 0, 1, . . . , m .

Let ∆̃m := {δ̃0 < δ̃1 < · · · < δ̃m}. By Theorem 2.4 there exists

0 6= Rm ∈ E(∆̃m) such that

|Rm(b)|

‖Rm‖L2[a,b]

≥
|Rm(b)|

‖Rm‖L2(−∞,b]

≥ c5

(
m∑

j=0

δ̃j

)1/2

≥ c5

(
(m + 1)λ

2(n − k + 1)

)
1/2

≥
c5

2
λ

1/2
.

Moreover, by Lemma 4.2 we may assume that Rm has m zeros in [a, b]. Now
let

γj := λj+k and δj :=
λ

n − k + 1
+ jε , j = 0, 1, . . . , 2m ,

∆2m := {δ0 < δ1 < · · · < δ2m} and Γ2m := {γ0 < γ1 < · · · < γ2m} .

Then

P2m = R
2

m ∈ E(∆2m)

is nonnegative on (−∞,∞) having 2m zeros in (−∞, b], counted with multi-
plicity. Now, by Lemma 4.3* (if ε > 0 is sufficiently small, then the assump-
tions are satisfied), there exists 0 6= Q2m ∈ E(Γ2m) ⊂ E(Λn) such that

|Q2m(b)|

‖Q2m‖L1(−∞,b]

≥
|P2m(b)|

‖P2m‖L1(−∞,b]

=
|Rm(b)|2

‖Rm‖2

L2(−∞,b]

≥
c
2

5

4
λ .
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Now let S2m ∈ E(Γ2m) ⊂ E(Λn) be defined by

S2m(x) =

∫ x

−∞

Q2m(t) dt .

Then S2m is increasing on (−∞,∞) and

|S ′
2m(b)|

‖S2m‖[a,b]

≥
|S ′

2m(b)|

‖S2m‖(−∞,b]

≥
|Q2m(b)|

‖Q2m‖L1(−∞,b]

≥
c
2

5

4
λ .

Note that the constant c
2

5
/4 above is absolute and as such it is independent

of a as well. Hence the standard compactness argument in the beginning of
the proof can be implemented. �

Proof of Theorem 3.2. The upper bound of the theorem follows from Theo-
rem 2.5. Now we turn to the proof of the lower bound. Assume that

λ0 < λ1 < · · · < λm < 0 ≤ λm+1 < λm+2 < · · · < λn .

We distinguish four cases.

Case 1:
∑n

j=m+1
|λj| ≥

1

2

∑n
j=0

|λj| ≥ n
2 log n. In this case the lower bound

of Theorem 3.1 gives the lower bound of the theorem.

Case 2:
∑m

j=0
|λj| ≥

1

2

∑n
j=0

|λj| ≥ n
2 log n. In this case the lower bound

of Theorem 3.1 gives the lower bound of the theorem after the substitution
u = −t.

Case 3: 1

2

∑n
j=0

|λj| ≤ n
2 log n and m < n/2. Let k = bn/4c − 1. Without

loss of generality we may assume that n ≥ 8, hence k ≥ 1. Let

∆k := {δ0 < δ1 < · · · < δk} , δj := jε , j = 0, 1, . . . , k .

By Theorem 2.5* there exists 0 6= Rk ∈ E(∆k) such that

|Rk(b)|

‖Rk‖L2[a,b]

≥ c7n .

Moreover, by Lemma 4.2 we may assume that Rk has k zeros in [a, b]. Now
let

∆2k := {δ0 < δ1 < · · · < δ2k} , δj := jε , j = 0, 1, . . . , 2k ,

and

Γ2k := {γ0 < γ1 < · · · < γ2k} := {λn−2k < λn−2k+1 < · · · < λn} .

Then
P2k = R

2

k ∈ E(∆2k)

is nonnegative on (−∞,∞) and has 2k zeros in [a, b], counted with multiplic-
ity. Now, by Lemma 4.3* (if ε > 0 is sufficiently small, then the assumptions
are satisfied), there exists 0 6= Q2k ∈ E(Γ2k) ⊂ E(Λn) such that

|Q2k(b)|

‖Q2k‖L1[a,b]

≥
|P2k(b)|

‖P2k‖L1[a,b]

=
|Rk(b)|

2

‖Rk‖2

L2[a,b]

≥ c
2

7
n

2
.
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Now let S2k ∈ E(Γ2k) ⊂ E(Λn) be defined by

S2k(x) =

∫ x

−∞

Q2k(t) dt .

Then S2k is increasing on (−∞,∞) and

|S ′
2k(b)|

‖S2k‖[a,b]

≥
|Q2k(b)|

‖Q2k‖L1[a,b]

≥ c
2

7
n

2
.

Case 4: 1

2

∑n

j=0
|λj| ≤ n

2 log n and m ≥ n/2. The proof follows from that in
Case 3 by the substitution u = −t. �
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polynomials, Trans. Amer. Math. Soc. 342 (1994), 523–542.

[9] R.A. DeVore, G.G. Lorentz, Constructive approximation, Springer Verlag, Berlin,

1993.
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ON PRIMITIVE DIVISORS OF n
2 + b

GRAHAM EVEREST AND GLYN HARMAN

Abstract. We study primitive divisors of terms of the sequence n2 + b,

for a fixed integer b that is not a negative square. It seems likely that

the number of terms with a primitive divisor has a natural density. This

seems to be a difficult problem. We survey some results about divisors of

this sequence as well as provide upper and lower growth estimates for the

number of terms which have a primitive divisor.

1. Primitive prime divisors

Given b, an integer that is not a negative square, consider the integer
sequence with nth term Pn = n

2 + b. It seems likely that infinitely many of
the terms are prime but a proof seems elusive. Perhaps this mirrors the status
of the Mersenne Prime Conjecture, which predicts that the sequence with nth
term Mn = 2n − 1 contains infinitely many prime terms. At least with the
Mersenne sequence, an old result shows that new primes are produced in a
less restrictive sense.

Definition 1.1. Let (An) denote a sequence with integer terms. We say an
integer d > 1 is a primitive divisor of An if

(1) d | An and
(2) gcd(d, Am) = 1 for all non-zero terms Am with m < n.

In 1886 Bang [2] showed that if a is any fixed integer with a > 1 then the
sequence with nth term a

n − 1 has a primitive divisor for any index n > 6.
This is remarkable because the number 6 is uniform across all a and it is
small. Before we say any more about polynomials, a short survey follows
indicating the incredible influence of Bang’s Theorem.

1.1. Primitive divisor theorems. In 1892 Zsigmondy obtained the gen-
eralization that for any choice of coprime a and b with a > b > 0, the
term a

n − b
n has a primitive divisor for any index n > 6. This lovely result

was rediscovered several times in the early 20th century and it has turned
out to be widely applicable. For example, the order of the group GLn(Fq)
has a primitive divisor for all large n, so Sylow’s Theorem can be invoked

2000 Mathematics Subject Classification. 11A41, 11B32, 11N36.

Key words and phrases. Prime, primitive divisor, quadratic polynomial.
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to deduce information about the structure of the group. See [22] and the
references therein where applications to Group Theory are discussed.

The next major theoretical advance was made by Carmichael. Let u and v

denote conjugate quadratic integers; in other words, zeros of a monic irre-
ducible polynomial with integer coefficients. Consider the Lucas sequence
defined by

Un = (un − v
n)/(u − v) .

The Fibonacci sequence (Fn) arises by taking the roots of the polynomial
x

2 − x − 1. Carmichael [5] showed that if u and v are real then Un has a
primitive divisor for n > 12. This is a sharp result because F12 does not
have a primitive divisor. Less is currently known about the corresponding
Lehmer-Pierce sequence

Vn = (un − 1)(vn − 1) .

Kálmán Győry pointed out to the first author that if uv = 1 then Vn has
a primitive divisor for all n beyond some bound; if uv = −1 on the other
hand, then V2k does not have a primitive divisor if k is odd, because of the
identity V2k = −V

2

k . In fact, when uv = 1, the bound mentioned is uniform.
Győry’s second observation is germane to this paper: when uv = −1, the set
of terms with a primitive divisor has natural density equal to 3

4
(see Theorem

1.2 and Conjecture 1.5). At the conference, Richard Pinch remarked that
certain Lehmer-Pierce sequences count orders of groups: this time the groups
are E(Fpn), where E denotes an elliptic curve.

Bilu, Hanrot and Voutier [4] used powerful methods from Diophantine
analysis to prove, in the general case, that Un has a primitive divisor for
any n > 30. Again this is a sharp result as the sequence generated by the
polynomial x

2 − x + 2 illustrates. Finally, Silverman [25] obtained a primi-
tive divisor theorem for Elliptic Divisibility Sequences and a uniform version
appears in [11] for a certain class of sequences.

1.2. Primitive divisors of n
2 + b.

Theorem 1.2. Infinitely many terms of the sequence n
2 + b do not have a

primitive divisor.

The proof of Theorem 1.2 follows very easily from [23] and will be discussed
shortly. Schinzel’s proof can be used to construct only a very thin set of terms
with no primitive divisor. Dartyge [7] has improved Schinzel’s result for n

2+1
(and in principle the method works for n

2 + b also). The aim of this paper is
to obtain a better grasp on the set of terms with no primitive divisor. We will
also consider whether the set of indices n for which Pn has a primitive divisor
has a natural density. Apparently this lies quite deep. For other interesting
approaches to the study of divisors of quadratic integral polynomials; consult
[7], [9], [10], [16], [20], [21] and [27]. For higher order polynomials see [8].
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1.3. The greatest prime factor. Let P
+(m) denote the greatest prime

factor of the integer m > 1. There is a wealth of literature about P
+(n2 + b)

concerned with the fact that P
+(n2 + b) → ∞ as n → ∞, see [24, Chapter

7]. In a slightly different direction, Luca [19] has recently revived an old
method of Lehmer’s [18] to show that, given B, the set of indices for which
P

+(n2 + 1) < B is efficiently computable. Carmichael’s result mentioned
earlier for Lucas sequences plays a key role. Luca illustrates the method by
showing that when B = 101, n ≤ 24208144.

The following is an easy proposition, see [6] or [12], which relates P
+(n2+b)

to the existence of a primitive divisor.

Proposition 1.3. For all n > |b|, the term Pn = n
2 + b has a primitive

divisor if and only if P
+(n2 + b) > 2n. For all n > |b|, if Pn has a primitive

divisor then that primitive divisor is a prime and it is unique.

Proof of Theorem 1.2. Results of Schinzel [23, Theorem 13] show that for
any α > 0, P

+(n2 + b) is bounded above by n
α for infinitely many n. Taking

α = 1

2
, Proposition 1.3 shows that Pn = n

2 +b fails to have a primitive divisor
infinitely often. �

Given x > 1, Schinzel’s method constructs fewer than log x terms Pn with
n < x having no primitive divisor. For α >

149

179
, Dartyge [7] showed that

∣

∣{n ≤ x : P
+(n2 + 1) < x

α}
∣

∣� x .

It should be noted that the implied constant is very small, involving a term
2−δ−2

where δ “est extrêment petit” [7, p.3 line 10]. In this paper we prove
the following, which provides good upper and lower estimates for the number
of terms with a primitive divisor.

Theorem 1.4. Supposing −b is not an integer square, define

ρb(x) =
∣

∣{n ≤ x : n
2 + b has a primitive divisor }

∣

∣ .

For all sufficiently large x we have

0.5324 <
ρb(x)

x
< 0.905 .

1.4. Natural density. Integers m with the property P
+(m) > 2

√
m were

studied by Chowla and Todd [6]. They proved that the set of these numbers
has natural density log 2. Perhaps this suggests the following:

Conjecture 1.5. If −b is not an integer square then ρb(x) ∼ x log 2.

With the availability and power of modern computers, one would usually
resort to some computational evidence in support of such a conjecture. The
authors of [12] looked for such evidence. Whilst they found nothing to clearly
contradict the conjecture, neither did they find overwhelming evidence to
support it. The problem is that the convergence to the natural density is
very slow.
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The reason for this might best be explained as follows. Chowla and Todd’s
proof uses Mertens’ Theorem about the asymptotic formula for the sum of
inverse primes:

∑

p<x

1

p
= log log x + C + O

(

1

log x

)

.

The main term of this formula grows very slowly and the error term shrinks
very slowly as well. Perhaps, somehow, this lies behind the extremely slow
convergence to the natural density of terms with primitive divisor, as in Con-
jecture 1.5. In addition, the arithmetical nature of the sequence n

2 +b plays a
significant rôle when discussing its very large prime divisors (see (11) below)
and this will affect what happens for ‘small’ x. Our paper concludes with
an explanation as to why we are not holding our breath about a proof of
Conjecture 1.5.

2. Simple bounds

The article [12] gives some simple estimates for ρb(x) which are sketched
below. These are recalled here as a way in to the harder methods. The
first bound in (1) counts indices which produce no primitive divisor. It is
much better than the bound obtained from [23] but the set of indices still
has density zero and perhaps indicates the limit of elementary methods. The
second bound in (1) is very easy but already gives a good estimate for the
density of terms with a primitive divisor if it exists.

Theorem 2.1. For all sufficiently large x,

x

log x
� x − ρb(x) and 1

2
x − ρb(x) � x

log x
. (1)

The proofs use little apart from well-known estimates for sums over primes,
which can be found in the book of Apostol [1]. Both begin with an old idea of
Chebyshev which is used frequently as the starting point of investigating the
greatest prime factor of certain sequences (see [17, Chapter 2] for example).

Apart from a finite number of primes, any prime p that divides n
2 + b has

the property that −b is a quadratic residue modulo p. Let R denote the set
of odd primes for which −b is a quadratic residue; notice that R comprises
the intersection of a finite union of arithmetic progressions with the set of
primes. Write

Qx =
x
∏

n=1

|Pn| ,

and denote by ω(Qx) the number of prime divisors of Qx. By Proposition 1.3
it is sufficient to bound ω(Qx) because, with finitely many exceptions, a
primitive divisor is unique.
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2.1. Sketch proof of Theorem 2.1. Define

S = {p ∈ R : p|Qx, p < 2x} and S ′ = {p ∈ R : p|Qx, p ≥ 2x}.
Let s = |S| and s

′ = |S ′|. We seek bounds for s + s
′. By Dirichlet’s Theorem

on primes in arithmetic progression it is sufficient to estimate s
′. Following

Chebyshev’s method, use Stirling’s Formula to obtain
∑

p|Qx

ep log p = log Qx = 2x log x + O(x) , (2)

where the left-hand side corresponds to the prime decomposition of Qx, for
positive integers ep. The sum on the left-hand side of (2) decomposes accord-
ing to the definitions of S and S ′ to give

∑

p∈S

ep log p +
∑

p∈S′

log p = log Qx , (3)

noting that ep = 1 whenever p ≥ 2x. It is easy to show that
∑

p∈S

ep log p = x log x + O(x) . (4)

Combining (2), (3) and (4) gives

x log x + O(x) =
∑

p∈S′

log p . (5)

The right hand side is bounded above by s
′ log(x2 +1) yielding a lower bound

for s
′.

The second bound in (1) arises similarly using a finer partition of the set S ′.
For K > 2, define:

T = {p ∈ R : p|Qx, 2x < p < Kx} ;

U = {p ∈ R | p|Qx, Kx < p} .

Write t = |T | and u = |U|; we seek an upper bound for the expression t + u.
Using the definitions of T and U as well as equation (4) shows that

∑

p∈T

log p +
∑

p∈U

log p = x log x + O(x) .

The extra leverage comes because the left-hand side is greater than

t log x + u log(Kx) .

Now K can be chosen judiciously to beat the other O-constants. An upper
bound for t + u follows easily and hence the second bound in (1).

Note Actually K can be taken as large as log x which yields

x log log x

log x
< x − ρb(x)

for all large x. But this still fails to produce a positive density set.
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3. Better bounding

It is the aim of this section to prove Theorem 1.4. Take b = 1 for simplicity,
so we can drop the subscript b on ρ; as with [9] the arguments in [17] can be
used to generalise to b 6= 1. We then prove the following.

Theorem 3.1. For all sufficiently large x we have

0.5324 <
ρ(x)

x
< 0.905 .

Let

Nx(p) =
∑

x≤n<2x
p|n2

+1

1 .

The previous section shows it is sufficient to estimate
∑

p≥2x

Nx(p) .

Recasting (5) using this definition:
∑

p≥2x

Nx(p) log p = x log x + O(x) . (6)

The extreme cases arise if most of the contribution to this sum comes from
p around 2x in size, or around 4x2 in size. In the former case the bound
log p ≥ log x gives the trivial bound

∑

p≥2x

Nx(p) < x, (7)

which is weaker than the first bound of the last section. On the other hand,
log p ≤ 2 log x + O(1) gives

∑

p≥2x

Nx(p) >
1

2
x + o(x) , (8)

which is essentially the second bound of the last section.
We could obtain improved results if we had better information about the

following expression:

Vx(v) =
∑

v<p≤ev

Nx(p) .

It is a good exercise to show that

Vx(v) ∼ x

log v
(9)

implies the conjecture. Unfortunately, the asymptotic formula (9) is not
expected to be true for very large v, in view of the arithmetic nature of n

2 +1
(see below). However, it is expected that (9) will be true for v < x

2−ε for any
ε > 0 and this suffices to prove the conjecture.
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3.1. A better upper bound for ρ(x). We begin by modifying the defini-
tions to allow us to use the Deshouillers-Iwaniec method in [9]. To be precise
we must use smooth functions in order to apply the mean-value estimates in
[9] for Kloostermann sums. Let ε, η be two small positive quantities. Let b(u)
be a function satisfying b(u) ∈ [0, 1] for all u ∈ R, with

b(u) =

{

1 if (1 + ε)x ≤ u ≤ (2 − ε)x ,

0 if u ≤ x or u ≥ 2x ,

dr
b(u)

dur
�r,ε u

−r for all r ∈ N .

We redefine Nx(p) to be

Nx(p) =
∑

x≤n<2x
p|n2

+1

b(n) .

An upper bound for this summed over p will give us an upper bound for the
original problem, since the two quantities will differ by at most

3

2
εx .

Now write

X =

∫

2x

x

b(u) du, |Ad| =
∑

n2+1≡0 (mod d)

b(n) .

By the working on [9, p.2] we can modify the Chebyshev argument to give
∑

p

|Ap| log p = 2X log x + O(x) .

Also, as shown in [9], we have
∑

p≤x

|Ap| = X log x + O(x) .

Let
Px = max

|Ap|6=0

p = x
σ
, say.

We therefore have
∑

x≤p≤Px

|Ap| log p = X log x + O(x) .

Deshouillers and Iwaniec then estimate this sum as
∑

1≤j≤J

S(X, Vj) + O(x) ,

where Vj = 2j
x and

S(x, Vj) =
∑

Vj<p≤4Vj

Cj(p) log p .
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Here the infinitely differentiable functions Cj(u) ∈ [0, 1] are supported in
[Vj, 4Vj), with

∑

1≤j≤J

Cj(u) =

{

1 if 2x < u ≤ Px ,

0 if u < x or u > Px .

After several transformations and an application of the Rosser-Iwaniec sieve
in tandem with their own sophisticated mean-value estimate for averages of
Kloostermann sums, they prove that

S(x, Vj) ≤
2

log Dj

∫

Cj(u)
log u

u
du

(

1 + O

(

1

log D

))

. (10)

Here Dj = x
1−η

V
− 1

2

j . From this they deduce that σ is not less than the
solution to

2 − σ − 2 log(2 − σ) = 5

4
.

That is, σ = 1.202468 . . . .
Now, the worst case scenario for the upper bound (7) is if (10) holds with

equality for each Vj. This gives
∑

p≥2x

Nx(p) ≤
∑

1≤j≤J

S(X, Vj)(log Vj)
−1 + O(x(log x)−1)

= x
(

1 + O(log x)−1
)

∫ σ

1

2

1 − t/2
dt

= (2σ − 3

2
)x
(

1 + O((log x)−1)
)

< 0.905x .

3.2. A better lower bound for ρ(x). Now we need to show that not all
the contribution comes from primes near x

2. This is a relatively simple ap-
plication of an upper bound sieve to the set

{m : m` = n
2 + b, x < n ≤ 2x} for ` in some range.

In this case we can apply the sieve with distribution level

D` =
x

`(log x)A
,

for some A, by an elementary argument: this corresponds to Vj/x in the last
section. Of course, this is why the elementary argument is no good for Vj

near x in size. The crossover point between the two methods is at Vj = x
4

3 ,
but we can get nowhere near this value for the problem discussed in [9]. For
` = 1 the problem is the well-known one of representing almost-primes by
values of n

2 + 1 and giving an upper bound for the number of prime values
of this polynomial. By [14, Theorem 5.3] (or see [13, p.66])we have

∑

x≤n≤2x
n2

+1=p

1 ≤ 2x

log x

∏

p

(

1 − χ(p)

p − 1

)(

1 + O

(

log log 3x

log x

))

. (11)
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Here χ(n) is the non-trivial character (mod 4). Note the important product
over primes above which encodes arithmetical information relevant to the
polynomial n

2 + 1. This did not arise in the previous section since summing
over a sufficiently long range for ` smooths out this factor (compare [9, §8]).
It is expected that (11) holds with equality if the factor 2 is replaced by 1

2
on

the right-hand side, see [15, 3].
We obtain our desired bound by first considering

W (L, x) =
∑

L≤`≤eL

∑

x≤n≤2x
n2

+1=`p

1 .

Write ω(d) for the number of solutions to n
2 +1 ≡ 0 (mod d) and let {λd}d≤D

be the Rosser upper bound sieve of level DL = x(L(log x)A)−1 as described
in [9, §4] and explicitly constructed in [13, Chapter 4]. We then have

W (L, x) ≤
∑

L≤`≤eL

∑

d≤DL

λd

∑

x≤n≤2x
n2

+1≡0 (mod d`)

1

=
∑

L≤`≤eL

∑

d≤DL

λdω(d`)
(

x

d`
+ O(1)

)

= x

∑

L≤`≤eL

∑

d≤DL

λd

ω(d`)

d`
+ O

(

LDL(log x)2
)

.

In the above we have noted that ω(d`) ≤ τ(d)τ(`) and used the well-known
average value of the divisor function τ(n) to give a bound for the error term.
We then use a similar analysis to that in [9, §8] to produce the ‘main term’.
We give all the details that differ from [9] here for completeness.

Firstly write

∑

L≤`≤eL

∑

d≤DL

λd

ω(d`)

d`
=
∑

d≤DL

λd

ω(d)

d
J(d, L) .

Now put

L(s, d) =
∞
∑

m=1

ω(dm)

ω(d)ms
.

Note by [9, Lemma 4] that

L(s, d) =
ζ(s)L(s, χ)

ζ(2s)

∏

p|d

(

1 +
1

ps

)−1

.

Using Perron’s formula ([26, Theorem 3.12]) with T = x, c = (log x)−1 we
have

J(d, L) =
1

2πi

∫ c+ix

c−ix

L(s + 1, d)
(eL)s − L

s

s
ds + O

(

x
− 1

2

)

.
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The final term is negligible.
(

Actually, this has been estimated very crudely, in

reality it is O(xε−1)
)

. Now take the contour of integration back to Re s = − 1

2
.

The pole at s = 0 gives a term

L(1, χ)

ζ(2)

∏

p|d

(

1 +
1

p

)−1

.

The pair of integrals on Im s = ±x give a negligible contribution
(

O(xε− 2

3 )
)

,
using

max
(

|ζ(s)|, |L(s, χ)|
)

� T
1

6 for 1 ≤ | Im s| ≤ T, Re s ≥ 1

2
.

The integral on the new contour can be estimated using:
∫ T

−T

|ζ(1

2
+ it)|2

1 + |t| dt � (log T )2
,

with the same bound applying when ζ(s) is replaced by L(s, χ), together with
([26, p.135])

1

ζ(1 + it)
� log T for |t| ≤ T ,

and
∣

∣

∣

∣

∣

∣

∏

p|d

(

1 +
1

ps+1

)−1

∣

∣

∣

∣

∣

∣

≤
∏

p|d

(

1 − 1

p
1

2

)−1

< τ(d) .

This gives a bound for the integral which is

� τ(d)(log x)3

L
1

2

.

Thus

∑

L≤`≤eL

∑

d≤DL

λd

ω(d`)

d`
=
∑

d≤DL

λd

ω
′(d)

d
+ O

(

∑

d≤DL

ω(d)τ(d)(log x)3

L
1

2 d

)

.

Here

ω
′(d) = ω(d)

∏

p|d

(

1 +
1

p

)−1

.

The rest of the working follows mutatis mutandis from [9, p.10]. Hence

x

∑

L≤`≤eL

∑

d≤DL

λd

ω(d`)

d`
=

2x

log DL

(

1 + O

(

1

log DL

))

+ O

(

x(log x)7

L
1

2

)

.

The reader can thus see that the extra error term O(x(log x)7
L
− 1

2 ) (the log
power could be reduced here by more careful working) corresponds to the
averaging over ` smoothing out the influence of the product in (11), and
this must dominate the main term for small L since the ‘main term’ will
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be incorrect in this case. Assuming that DL = xL
−1(log x)−4 and also that

x
3

4 > L > (log x)18 we obtain

W (N, L) ≤ 2x

log DL

+ O

(

x

(log x)2

)

. (12)

For L ≤ (log x)18 we can establish a slightly cruder upper bound as follows.
For each value of ` we do not sieve by primes dividing `. This makes the
λd depend on `, but we have λd = 0 if (d, `) > 1. Hence we can write
ω(d`) = ω(d)ω(`). Following the analysis above, the remainder term remains
O(LDL(log x)2). The ‘main term’ for the upper bound is now

2x

log DL

∑

L≤`≤eL

ω(`)

φ(`)

∏

p-`

(

1 − χ(p)

p − 1

)

≤ Kx

log DL

,

for some absolute constant K. The contribution from the terms for which
L ≤ (log x)18 is thus � (log log x)(log x)−1 times the total contribution for
larger L. These terms may therefore be neglected asymptotically.

Now the worst case scenario for (7) has equality in (12) for

x
2−θ ≥ L ≥ (log x)18

, where

∫

2

θ

2t

t − 1
dt = 1 .

In other words, θ is the solution to

2(2 − θ) − 2 log(θ − 1) = 1 .

This is the limit of the sequence

a1 = 2, an+1 =
1

2

(

3

2
+ an − log(an − 1)

)

(n ≥ 1) ,

quickly giving the value 1.766249 . . . . We then calculate
∫

2

θ

2

t − 1
dt = 2θ − 3 > 0.5324 . . . .

4. Some implications of Conjecture 1.5

The following argument shows that we do not expect Conjecture 1.5 to be
settled in the near future. In the previous section we have used the tools
that have been developed for the investigation of the greatest prime factor
of n

2 + 1 to obtain (rather weak) approximations to the conjecture. Now we
assume the conjecture and demonstrate that it would lead to a phenomenal
improvement for the greatest prime factor problem.

The conjecture leads to
∑

p≥2x

Nx(p) ∼ x log 2 .
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By the Chebyshev argument (6), on average in these sums,

log p

log x
∼ 1

log 2
= σ (say) = 1.4416 . . . .

Hence the greatest prime factor of n
2 + 1 infinitely often exceeds n

σ. This
more than doubles the improvement of Deshouillers-Iwaniec over the trivial
estimate! However, we can do still better using the elementary bound from
the last section. The worst case scenario now has all the contribution to
the left hand side of (6) coming from p close to x

σ. Since the bounds of
the last section must hold (and they are better than the Deshouillers-Iwaniec
estimates in this region), this corresponds to finding α < σ < β with

∫ β

α

2

t − 1
dt = log 2 ,

∫ β

α

2t

t − 1
dt = 1 .

A little bit of manipulation gives the solution to be

β = 1 +
1 − log 2

2 −
√

2
= 1.52383 . . . . (13)

This gives the following result.

Theorem 4.1. If Conjecture 1.5 is true, then infinitely often the greatest

prime factor of n
2 + 1 exceeds n

β where β is given by (13).
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IRREDUCIBILITY AND GREATEST COMMON DIVISOR

ALGORITHMS FOR SPARSE POLYNOMIALS

MICHAEL FILASETA, ANDREW GRANVILLE, AND ANDRZEJ SCHINZEL

Abstract. We obtain algorithms for determining whether a nonrecipro-

cal polynomial with integer coefficients is irreducible, for calculating the

greatest common divisor of two polynomials with integer coefficients pro-

vided one is free of cyclotomic factors, and for determining whether a given

polynomial with integer coefficients has a cyclotomic factor. Each algo-

rithm has a running time that is linear or almost linear in the logarithm

of the maximal degree of the input polynomial(s). The dependence in the

running time on the number of terms and the height of the input varies

depending on the algorithm.

1. Introduction

Let f(x) =
∑r

j=0
ajx

dj ∈ Z[x] with each aj nonzero and with dr > dr−1 >

· · · > d1 > d0 = 0. For simplicity, we refer to the degree dr of f(x) as
n. Observe that r + 1 is the number of terms of f(x). For convenience, we
suppose both n > 1 and r > 0. The height H, as usual, denotes the maximum
of the absolute values of the aj.

The lattice base reduction algorithm of A.K. Lenstra, H.W. Lenstra, Jr.,
and L. Lovasz [7] gives a factoring algorithm for f(x) that runs in time that
depends polynomially on log H and n. This clearly serves also as an irre-
ducibility test for f(x). One problem we address in this paper is the somewhat
different issue of describing an irreducibility algorithm for sparse polynomials,
that is where r is small compared to n. We view the input as being the list
of r + 1 coefficients aj together with the list of r + 1 exponents dj. With this
in mind, the input is of size O

(

r(log H + log n)
)

. We give an algorithm for
this problem that runs in time that is polynomial in log n (but note that the
dependence on r and log H in our arguments is not polynomial).

For f(x) ∈ Q[x], we define f̃ = x
n
f(1/x). We say that f(x) is reciprocal if

f(x) = ±f̃(x). Otherwise, we say that f(x) is nonreciprocal. We note that
f(x) is reciprocal if and only if the condition f(α) = 0 for α ∈ C implies that
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156 Algorithms for sparse polynomials

α 6= 0 and f(1/α) = 0. Our methods require the additional assumption that
f(x) is nonreciprocal. We establish the following.

Theorem A. There is a constant c1 = c1(r, H) such that an algorithm exists

for determining whether a given nonreciprocal polynomial f(x) ∈ Z[x] as

above is irreducible and that runs in time O
(

c1 log n (log log n)2 log log log n
)

.

The result relies heavily on some recent work by E. Bombieri and U. Zannier
described by the latter in an appendix of [11]. Alternatively, we can make
use of [1], work by these same authors and D. Masser, which describes a new
simplified approach to the previous work. The other main ingredients are
the third author’s application of the work of Bombieri and Zannier, given
originally in [10], and an improvement on the the first and third authors’
joint work in [4].

The constant c1 can be made explicit. We note though that c1 depends
on some effectively computable constants that are not explicitly given in the
appendix of [11] or in [1]. We therefore do not address this issue further here.

The algorithm will give, with the same running time, some information on
the factorization of f(x) in the case that f(x) is reducible. Specifically, we
have the following:

(i) If f(x) has a cyclotomic factor, then the algorithm will detect this
and output an m ∈ Z+ such that the cyclotomic polynomial Φm(x)
divides f(x).

(ii) If f(x) does not have a cyclotomic factor but has a non-constant
reciprocal factor, then the algorithm will produce such a factor. In
fact, the algorithm will produce a reciprocal factor of f(x) of maximal
degree.

(iii) Otherwise, if f(x) is reducible, then the algorithm outputs a complete
factorization of f(x) as a product of irreducible polynomials over Q.

The algorithm for Theorem A will follow along the lines given above. First,
we will check if f(x) has a cyclotomic factor. If it does, then the algorithm
will produce m as in (i) and stop. If it does not, then the algorithm will check
if f(x) has a non-cyclotomic non-constant reciprocal factor. If it does, then
the algorithm will produce such a factor as in (ii) and stop. If it does not,
then the algorithm will output a complete factorization of f(x) as indicated
in (iii).

Our approach to (i) will allow us to obtain additional information about
the complete set of cyclotomic factors of f(x). In particular, we are able to
describe, in the same running time given for the algorithm in Theorem A, the
factor of f(x) which has largest degree and only cyclotomic divisors. Details
are given in the next section.

Our approach can be modified to show that if f(x) ∈ Z[x] is nonreciprocal
and reducible, then f(x) has a non-trivial factor in Z[x] containing O(c2)
terms where c2 = c2(r, H). We note that the results of [9] imply that if
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f(x) also does not have a reciprocal factor, then every factor of f(x) in Z[x]
contains O(c2) terms.

In the case that f(x) ∈ Z[x] is reciprocal, one can modify our approach to
obtain some information on the factorization of f(x). Define the nonreciprocal
part of f(x) to be the polynomial f(x) removed of its irreducible reciprocal
factors in Z[x] with positive leading coefficients. Then in the case that f(x)
is reciprocal, one can still determine whether the nonreciprocal part of f(x)
is irreducible in time O

(

c1 log n (log log n)2 log log log n
)

. Furthermore, in this
same time, one can determine whether f(x) has a cyclotomic factor and, if
so, an integer m for which Φm(x) divides f(x).

In addition, we address the problem of computing the greatest common
divisor of two sparse polynomials. For nonzero f(x) and g(x) in Z[x], we
use the notation gcdZ

(

f(x), g(x)
)

to denote the polynomial in Z[x] of largest
degree and largest positive leading coefficient that divides f(x) and g(x) in
Z[x]. Later in the paper, we will also make use of an analogous definition
for gcdZ(f, g) where f and g are in Z[x1, . . . , xr]. In this case, we interpret
the leading coefficient as the coefficient of the expression x

e1

1
x

e2

2
. . . x

er

r with
e1 maximal, then e2 maximal given e1, and so on. Our main result for the
greatest common divisor of two sparse polynomials is the following.

Theorem B. There is an algorithm which takes as input two polynomials

f(x) and g(x) in Z[x], each of degree ≤ n and height ≤ H and having ≤ r+1
nonzero terms, with at least one of f(x) and g(x) free of cyclotomic factors,

and outputs the value of gcdZ

(

f(x), g(x)
)

and runs in time O
(

c3 log n
)

for

some constant c3 = c3(r, H).

Our approach will imply that if f(x), g(x) ∈ Z[x] are as above with f(x)
or g(x) not divisible by a cyclotomic polynomial, then gcdZ

(

f(x), g(x)
)

has
O(c4) terms where c4 = c4(r, H). The same conclusion does not hold if one
omits the assumption that either f(x) or g(x) is not divisible by a cyclotomic
polynomial. The following example, demonstrating this, was originally noted
in the related work of the third author [12]. Let a and b be relatively prime
positive integers. Then

gcd
(

x
ab − 1, (xa − 1)(xb − 1)

)

=
(xa − 1)(xb − 1)

x − 1
.

In connection with Theorem B, we note that D.A. Plaisted [8] has shown
that computing gcdZ

(

f(x), g(x)
)

for general sparse polynomials f(x) and g(x)
in Z[x] is at least as hard as any problem in NP. On the other hand, his proof
relies heavily on considering polynomials f(x) and g(x) that have cyclotomic
factors. By contrast, our proof of Theorem B will rest heavily on the fact
that one of f(x) or g(x) does not have any cyclotomic factors.

Our proof of Theorem A will rely on Theorem B. In fact, Theorem B is
where we make use of the work of Bombieri and Zannier already cited. It
is possible to prove Theorem A in a slightly more direct way, for example



158 Algorithms for sparse polynomials

by making use of Theorem 80 in [11] instead of Theorem B and Theorem 1
below. This does not avoid the use of the work of Bombieri and Zannier since
Theorem 80 of [11] is based on this work. We have chosen the presentation
here, however, because it clarifies that parts of the algorithm in Theorem A
can rest on ideas that have been around for over forty years. In addition,
we want the added information given by (i), (ii) and (iii) above as well as
Theorem B itself.

To aid in our discussions, we have used letters for labelling theorems that
establish the existence of an algorithm and will refer to the algorithms us-
ing the corresponding format. As examples, Algorithm A will refer to the
algorithm given by Theorem A, and Algorithm B will refer to the algorithm
given by Theorem B. Also, we make use of the notation Or,H

(

w(n)
)

to de-
note a function with absolute value bounded by w(n) times a function of
r and H, for n sufficiently large. We note, however, that n being suffi-
ciently large is for convenience to accommodate expressions appearing in the
big-oh notation; the algorithms described are for all integers n > 1. Thus,
the running time for Algorithm A and Algorithm B can be expressed as
Or,H

(

log n (log log n)2 log log log n
)

and Or,H(log n), respectively.

2. The Proof of Theorem A

We begin with the following result, which improves on the main result in
[4].

Theorem C. There is an algorithm that has the following property: given

f(x) =
∑r

j=0
ajx

dj ∈ Z[x] of degree n > 1 and with r + 1 > 1 terms, the

algorithm determines whether f(x) has a cyclotomic factor in running time

Or,H

(

log n (log log n)2 log log log n
)

, where H denotes the height of f(x). Fur-

thermore, with the same running time, if f(x) is divisible by a cyclotomic

polynomial, then the algorithm outputs a positive integer m for which Φm(x)
divides f(x).

Proof. We begin as in the proof of Theorem 2 of [4] and initially give an
argument for the existence of an algorithm as in the theorem with running
time Or,H

(

(log n)2
)

. We then explain how the algorithm can be sped up to
produce the running time given in the statement of the theorem.

We describe and make use of Theorem 5 from [2]. For k a positive integer,
define γ(k) = 2 +

∑

p|k(p − 2). Following [2], we call a vanishing sum S

minimal if no proper subsum of S vanishes. We will be interested in sums
S =

∑t
j=1

ajωj where t is a positive integer, each aj is a nonzero rational
number and each ωj is a root of unity. We refer to the reduced exponent
of such an S as the least positive integer k for which (ωi/ω1)

k = 1 for all
i ∈ {1, 2, . . . , t}. Theorem 5 of [2] asserts then that if S =

∑t

j=1
ajωj is a

minimal vanishing sum, then t ≥ γ(k) where k is the reduced exponent of S.
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Also, note that Theorem 5 of [2] implies that the reduced exponent k of a
minimal vanishing sum is necessarily squarefree.

To explain our algorithm, suppose first that f(x) has a cyclotomic factor
Φm(x), and that we can write f(x) =

∑s

i=1
fi(x), where each fi(x) is a nonzero

polynomial divisible by Φm(x), no two fi(x) have terms involving x to the
same power, and s is maximal. Observe that each fi(x) necessarily has at
least two terms. Setting ζm = e

2πi/m, we see that each fi(ζm) is a minimal
vanishing sum. For each i ∈ {1, 2, . . . , s}, we write fi(x) = x

bigi(x
ei) where

gi(x) ∈ Z[x], bi and ei are nonnegative integers chosen so that gi(0) 6= 0 and
the greatest common divisor of the exponents appearing in gi(x) is 1. Then
gi(ζ

ei

m) is a minimal vanishing sum with reduced exponent mi = m/ gcd(m, ei).
Necessarily, we have gi(ζmi

) = 0 and mi is squarefree. Also, if ti denotes the
number of nonzero terms of gi(x), we have

ti ≥ γ
(

mi

)

= 2 +
∑

p|mi

(p − 2) ,

which implies each prime divisor of mi is ≤ ti. Define

Mi = {` ∈ Z+ : Φ`(x) | gi(x), ` is squarefree, and γ(`) ≤ ti} .

In particular, mi ∈ Mi. In other words,
m

gcd(m, ei)
∈ Mi for all i ∈ {1, 2, . . . , s} . (1)

We have not explained how we can write f(x) =
∑s

i=1
fi(x) as above. In

particular, even if we know m exists with Φm(x) dividing f(x), we do not
know what m is. We circumvent this issue by considering every possible
partition of the set {0, 1, . . . , r} as a disjoint union of sets J1, J2, . . . , Js with
each set Ji containing at least two elements. For each partition, we consider
the polynomials

fi(x) =
∑

j∈Ji

ajx
dj = x

bigi(x
ei) , 1 ≤ i ≤ s ,

where as before bi and ei are nonnegative integers chosen so that gi(0) 6= 0
and the greatest common divisor of the exponents appearing in gi(x) is 1.
Defining ti and Mi as above, depending on the partition of {0, 1, . . . , r}, we
see then that if f(x) is divisible by some Φm(x), then there is a partition for
which (1) holds. On the other hand, if (1) holds for some positive integer m

and some partition of {0, 1, . . . , r} as above, then we have fi(ζm) = 0 for each
i ∈ {1, 2, . . . , s}, which implies f(ζm) = 0 and hence Φm(x) | f(x). Thus, (1)
holding for some m and some partition of {0, 1, . . . , r} as above is a necessary
and sufficient condition for f(x) to be divisible by a cyclotomic polynomial.

With the above in mind, we describe the algorithm for determining whether
f(x) has a cyclotomic factor, give further justification that the algorithm
works and give a proof that its running time is as claimed. The algorithm is
as follows. We go through every partition of the set {0, 1, . . . , r} into disjoint
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non-empty sets J1, J2, . . . , Js with each set Ji containing at least two elements.
Observe that there are Or(1) such partitions. For each such partition and
each i ∈ {1, 2, . . . , s}, we set u = u(i) to be the element of Ji for which du

is minimal. In terms of our definition of fi(x) and gi(x), this means bi = du

and ei is the greatest common divisor of the degrees of the terms of the
polynomial fi(x)/xdu . We compute ei by taking the greatest common divisor
of the numbers dv − du where v ∈ Ji. In terms of the complexity of the
algorithm, given Ji, determining du can be done in Or(log n) bit operations
and computing ei takes at most Or

(

(log n)2
)

bit operations (cf. the discussion
of Euclid’s algorithm in [3, p. 79]). We can in fact obtain a running time
of Or

(

log n (log log n)2 log log log n
)

using a recursive gcd computation for
large integers [3, p. 428] leading to the running time stated in Theorem C,
but for the moment we use the Or

(

(log n)2
)

estimate. The number of these
computations that are needed as we vary over the partitions of {0, 1, . . . , r}
and vary over the sets Ji making up the partitions is Or(1). The computations
have therefore thus far taken at most Or

(

(log n)2
)

bit operations.
Next, for each partition J1, J2, . . . , Js of {0, 1, . . . , r} as above, we compute

the sets Mi as follows. Observe that ti is the number of elements of Ji and is
necessarily ≤ r +1. Thus, we can construct a list of the ` that are squarefree
positive integers and such that γ(`) ≤ ti in time Or(1). For each such `, we
want to check if Φ`(x) divides gi(x). An algorithm that works well here and
in more generality as well is given as Algorithm A in [4]. For our purposes,
we can simply take each term avx

(dv−du)/ei in gi(x), where v ∈ Ji, and replace
it with avx

d′v where d
′
v ∈ {0, 1, . . . , ` − 1} and

d
′
v ≡ dv − du

ei

(mod `) .

If we call the resulting polynomial hi(x), then gi(x) is divisible by Φ`(x) if
and only if hi(x) is divisible by Φ`(x). Observe that the degree of hi(x) is
≤ ` ≤ (r + 1)r. Also, the height of hi(x) is ≤ (r + 1)H. Hence, one can check
directly if hi(x) is divisible by Φ`(x) in time Or,H(1). The construction of
each hi(x) takes time no more than Or,H

(

log n (log log n)2
)

, where the main
contribution of the time required comes from the division of dv − du by ei

above. Hence, the total time spent on constructing the various Mi as we
vary over the partitions J1, J2, . . . , Js of {0, 1, . . . , r} and i ∈ {1, 2, . . . , s} is
Or,H

(

log n (log log n)2
)

.
For the algorithm, we consider each partition J1, J2, . . . , Js of {0, 1, . . . , r}

as above one at a time. We construct the numbers ei and the sets Mi as
indicated. Next, we want to determine for a fixed partition whether (1) holds
for some positive integer m. In other words, we want to know whether there
is an m and mi ∈ Mi for which

m = mi gcd(m, ei) for i ∈ {1, 2, . . . , s} . (2)



Michael Filaseta, Andrew Granville and Andrzej Schinzel 161

For a positive integer k, we use the notation νp(k) to denote the positive
integer u such that p

u‖k. Then (2) holds if and only if each of the following
is true:

• If p | m1 . . .ms, then νp(m) ≤ νp(miei) for all i with equality whenever
p divides mi.

• If p - m1 . . .ms, then νp(m) ≤ νp(e0), where e0 = gcd(e1, . . . , es).

Defining

D =
∏

pt‖e0

p-m1···ms

p
t = e0

/

∏

pt‖e0

p|m1···ms

p
t and m0 = gcd(m1e1, . . . , mses)/D ,

we see that a solution to (2) exists if and only if there exist mi in Mi such
that for every prime p dividing some mi, the exact power of p dividing m0

is the same as the exact power of p dividing miei. Furthermore, the set of
m satisfying (2) in this case is precisely the set of m = m0d, where d | D.
Observe that m0 is the unique m satisfying (2) (if such m exist) with the
property that every prime divisor of m is a divisor of m1m2 · · ·ms. Further-
more, every prime divisor of m1m2 · · ·ms is a divisor of m0. We are interested
in knowing whether there exist m and mi satisfying (2), so we simply restrict
our attention to determining whether there exist mi in Mi such that

m0 = mi gcd(m0, ei) for i ∈ {1, 2, . . . , s} . (3)

Recall that the numbers ei and all elements of Mi have been computed (for
each i = 1, 2, . . . , s). Also, as the partitions vary, the number of different ei

and mi in Mi that arise is Or(1). We go through all these possibilities and
compute P, the set of primes dividing m1m2 · · ·ms. There are Or(1) such
primes and it takes Or(1) time to compute them. We compute e0, D and m0

as defined above and check whether (3) holds. Note that the second formula
for D involves removing the prime divisors from e0 that are in P, which is a
fixed set of primes of size Or(1). Thus, both e0 and D can be computed in
time Or

(

(log n)2
)

. We also compute m0 and check (3) with the same bound
on the running time. If an m0 is obtained for which (3) holds, then we output
that f(x) has a cyclotomic factor, indicate that the choice of m = m0 is such
that Φm(x) divides f(x) and end the algorithm. If no m0 is obtained for
which (3) holds, then we output that f(x) does not have a cyclotomic factor.
As there are Or(1) different m0 each of size Or(n), the running time estimate
is not affected by going through the various m0 and outputting the result.
Hence, the proof of the theorem, but with running time only Or,H

(

(log n)2
)

,
has been explained.

We improve the running time as follows. For the algorithm above, we made
use of a few different greatest common divisor computations. These were
done to construct ei for i ∈ {1, 2, . . . , s}, to calculate e0 = gcd(e1, . . . , es)
and m0 = gcd(m1e1, . . . , mses)/D, and to determine the value of the right-
hand side of (3). As noted earlier, we can apply known algorithms for gcd
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computations [3, p. 428] that would allow us to reduce the running time to
that required by the theorem. However, it is also worth noting that these gcd
computations can be circumvented and the required running time obtained
in a different manner. We explain this approach now.

Let J1, J2, . . . , Js be a partition of {0, 1, . . . , r} as in the argument above.
Write ei = e

′
ie

′′
i where every prime divisor of e

′
i is ≤ r + 1 and every prime

divisor of e
′′
i is > r + 1. Recall that u = u(i) ∈ Ji is chosen so that du is

minimal. One can compute e
′
i without computing ei from the formula

e
′
i =

∏

p≤ti

p
minv∈Ji

{νp(dv−du)}
.

In other words, for each p ≤ ti, we can calculate the minimum of νp(dv − du)
as v runs through the elements of Ji and then form the product above to get
e
′
i. As we shall see momentarily, the numbers e

′
i can be calculated in time

Or

(

log n (log log n)2 log log log n
)

.
We note now that

gi

(

x
e′′
i

)

=
∑

v∈Ji

avx
(dv−du)/e′

i ,

so we can compute gi

(

x
e′′
i

)

without computing gi(x), ei or e
′′
i . Define

M
′
i = {` ∈ Z+ : Φ`(x) | gi

(

x
e′′
i

)

, ` is squarefree, and γ(`) ≤ ti} .

The set M
′
i can be computed in the same manner that we computed Mi but

with gi(x) replaced by gi

(

x
e′′
i

)

. Thus, computing M
′
i , given the polynomials

gi

(

x
e′′
i

)

, takes time Or,H

(

log n (log log n)2
)

. Recall that the prime divisors of
e
′′
i are all > r + 1 ≥ ti. We deduce that the numbers ` in the definition of Mi

and M
′
i are relatively prime to e

′′
i . It follows that Mi = M

′
i . Thus, the above

analysis allows us to compute Mi without explicitly computing the numbers
ei and with running time Or,H

(

log n (log log n)2 log log log n
)

.
Next, we address how to determine whether (3) holds. Recall that P is the

set of prime divisors of m1m2 · · ·ms, and note that these primes are ≤ r + 1.
The prime divisors of m0 are precisely the primes in P. We deduce that (3)
holds if and only if

νp(m0) = νp(mi) + min{νp(m0), νp(ei)} (4)

for each i ∈ {1, 2, . . . , s} and for each p ∈ P. For each prime p ∈ P, we
compute the values of νp(ei), for i ∈ {1, 2, . . . , s}, by using that νp(ei) =
νp(e

′
i). Next, we compute

νp(m0) = min
1≤i≤s

{νp(mi) + νp(ei)} .

Then we check if (4) holds. Observe that each νp(mi) is either 0 or 1, so
νp(mi) can be computed by a simple division. We want also a method to
compute νp(ei) = νp(e

′
i), for i ∈ {1, 2, . . . , s}. We further need to explain

the computation of νp(dv − du) to obtain e
′
i above. For U a positive integer
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and p a prime ≤ r + 1, the value of νp(U) can be computed as follows. We

compute the values of p
2

j

successively for j ≥ 0 by squaring until we arrive
at a positive integer t for which p

2
t

> U . Observe that t = O(log log U). We

set k0 = 0. For j ∈ {1, 2, . . . , t}, we successively check if p
2

t−j | U and, if so,

set kj = kj−1 + 2t−j and replace U with U/p
2

t−j

. If p
2

t−j

- U , then we set
kj = kj−1. Then kt = νp(U). Using this procedure, we can compute νp(U) in
time Or

(

log U (log log U)2 log log log U
)

. The theorem follows. �

Although it does not affect our main results, it is of some value to note
that the running time of the algorithm can be shown to be

Or

(

log n (log log n)2 log log log n + log H
)

.

Indeed, the coefficients of f(x) only take part in the algorithm when we form
the polynomials hi(x) and when we check their divisibility by Φ`(x). Forming
the polynomials involves Or(1) additions of these coefficients and checking the
divisibility of an hi(x) by Φ`(x) takes time Or

(

log(H + 1)
)

. Note that these
divisions do not depend on n since the degrees and the coefficients of the
polynomials are Or(1) and Or(H), respectively.

As it may be of interest in other contexts, we explain briefly how we can
get a bit more out of the algorithm. More precisely, we explain how to obtain
the largest monic factor g(x) of f(x) with each irreducible factor of g(x)
cyclotomic and in time Or,H

(

log n (log log n)2 log log log n
)

. We begin with
determining the product of the distinct cyclotomic divisors of f(x). We note,
however, that the representations of g(x) and the product of the distinct
cyclotomic divisors of f(x) as polynomials cannot be the obvious ones as it is

not difficult to show that for a ≥ 2, the cyclotomic factors of x
(a−1)

2

+x
a−x−1

are distinct and their product contains exactly 2a− 2 terms. In other words,
explicitly writing out g(x), for example, can take time considerably more than
any power of log n.

For given positive integers u, v, define the set C(u, v) = {ud : d | v}. In the
algorithm above, we determined values m0 and D such that Φm(x) divides
f(x) whenever m ∈ C(m0, D). Let S be the set of all such pairs {m0, D} that
can arise as a solution to (2) in Algorithm C. We proved that Φm(x) divides
f(x) if and only if m is in the set

CS =
⋃

{m0 ,D}∈S

C(m0, D) .

We want to determine

ΦS(x) =
∏

m∈CS

Φm(x) .

The obvious way to do this is by determining each C(m0, D) explicitly,
but that would involve factoring D which, for complexity issues, should be
avoided. However, we can get around determining C(m0, D) explicitly by
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taking advantage of the fact that
∏

m∈C(u,v)

Φm(x) = Φu(x
v)

as follows.
We make a few observations about the sets C(u, v):

• One has C(U, V ) ⊆ C(u, v) if and only if UV divides uv, u divides U

and, as a consequence, V divides v.
• Given positive integers u, v, u

′
, v

′ with gcd(u, v) = gcd(u′
, v

′) = 1,
define U = lcm(u, u

′), and let V = gcd(v, v
′). Note that gcd(U, V ) =

1. Then

C(u, v) ∩ C(u′
, v

′) =

{

C(U, V ) if UV divides gcd(uv, u
′
v
′) ,

∅ otherwise.

• There is a natural ordering on the pairs {u, v} where u, v ∈ N, taking
{U, V } < {u, v} if UV < uv, or if UV = uv and V < v. We see that
if C(U, V ) ⊂ C(u, v) then {U, V } < {u, v}.

Now |S| = Or(1). Given S we create a new set T . We start with T0 = S,
and then recursively construct Tk+1 as the union of Tk and

{

{U, V } : C(U, V ) = C(u, v) ∩ C(u′
, v

′) for some {u, v}, {u′
, v

′} ∈ Tk

}

.

One can show that Tk+1 = Tk for some k = Or(1). When Tk+1 = Tk, we set
T = Tk. Note that |T | = Or(1) and gcd(u, v) = 1 for all {u, v} ∈ T . For each
{u, v} ∈ T , beginning with uv minimal and v minimal given uv, we define
the polynomials

Φ{u,v}(x) = Φu(x
v)

/

∏

{U,V }∈T
{U,V }<{u,v}

C(U,V )⊂C(u,v)

Φ{U,V }(x) ∈ Z[x] .

We do not compute these polynomials explicitly but can give their values as
the quotient above where {u, v} and each {U, V } in the product are given
explicitly. Then we have

ΦS(x) =
∏

{u,v}∈T

Φ{u,v}(x) .

Obtaining this description of ΦS(x) takes Or

(

log n (log log n)2 log log log n
)

bit operations.
The polynomial ΦS(x) is the product of all the distinct cyclotomic factors

of f(x). To deal with cyclotomic factors to higher multiplicities, we make use
of the following lemma due to G. Hajós [5] (also, see [11, p. 187]).

Lemma 1. If (x − α)k divides f(x), then k ≤ r.
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Recall that S was defined as the set of {m0, D} that gave rise to so-
lutions of (2) corresponding to cyclotomic factors of f(x). We construct
similar sets Sj corresponding to cyclotomic factors of f

(j)(x) for every j ∈
{0, 1, . . . , r − 1}. Observe that the coefficients of f

(j)(x) are bounded by
n

j
H, the degree of f

(j)(x) is n − j (assuming as we can that n ≥ r) and
the number of terms in f

(j)(x) is ≤ r + 1. Recalling that the running
time of Algorithm C is Or

(

log n (log log n)2 log log log n + log H
)

, it is not
difficult to see that the running time for computing the various sets Sj is
Or,H

(

log n (log log n)2 log log log n
)

. The exact multiplicity of a cyclotomic

factor of f(x) is k provided it divides f
(j)(x) for 0 ≤ j ≤ k − 1 and not

f
(k)(x). Lemma 1 further implies that if a cyclotomic polynomial divides

f
(j)(x) for every j ∈ {0, 1, . . . , r − 1}, then the multiplicity of the factor is

r (i.e., there is no need to check if the cyclotomic factor divides f
(r)(x)).

However, we need to be able to determine the common cyclotomic factors de-
termined by various sets Sj. To do this, we set S

∗
0

= S0, and then construct
recursively S

∗
k+1

as the set

{

{U, V } : C(U, V ) = C(u, v)∩C(u′
, v

′) for some {u, v} ∈ S
∗
k , {u′

, v
′} ∈ Sk+1

}

for each k ∈ {1, 2, . . . , r − 1}. One can then proceed by determining T
∗
k

from S
∗
k as we constructed T from S above, and then compute ΦS∗

k
(x), the

product of the distinct cyclotomic polynomials dividing f(x) with multiplicity
at least k+1. The product of the polynomials ΦS∗

k
(x) for k ∈ {0, 1, . . . , r−1}

is therefore the largest degree factor of f(x) that is a product of cyclotomic
polynomials. The total running time is Or,H

(

log n (log log n)2 log log log n
)

for describing this factor of f(x).
We are now ready to return to our description of Algorithm A. Algorithm A

begins by taking the input polynomial f(x) and applying Algorithm C. If f(x)
has a cyclotomic factor, we obtain m as in (i). As f(x) is not reciprocal, f(x)
cannot be a constant multiple of a cyclotomic polynomial. Hence, f(x) is
reducible and (i) holds.

This part of the algorithm does not actually depend on f(x) being nonre-
ciprocal. The proof of Algorithm C shows in fact that if f(x) has a cyclotomic
factor, then one can determine m as in (i) with every prime divisor of m being
≤ r +1. Thus, it would not be difficult to factor m and compute φ(m) in the
running time required for Theorem A. Once φ(m) is computed, then one can
determine if f(x) is a constant multiple of the cyclotomic polynomial Φm(x)
by comparing φ(m) with n.

We suppose now that f(x) does not have a cyclotomic factor. The next
step in Algorithm A is to determine whether f(x) has a reciprocal factor. We
shall do this by making use of Theorem B, which we establish in the next
section.
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We compute

f̃(x) = x
n
f(1/x) =

r
∑

j=0

ajx
n−dj .

Since f(x) does not have a cyclotomic factor, we can apply Algorithm B to

compute h(x) = gcdZ

(

f(x), f̃(x)
)

. Observe that h(x) is reciprocal and each
reciprocal factor of f(x) divides h(x). As f(x) is not reciprocal, we must
have deg h < deg f . If h(x) is not constant, then f(x) is reducible, h(x) is
a non-constant reciprocal factor of f(x) and (ii) holds as h(x) is a reciprocal
polynomial of largest possible degree dividing f(x). Otherwise, f(x) does not
have a non-constant reciprocal factor. Theorem B implies that this part of
Algorithm A has running time Or,H

(

log n
)

.
We are now left with considering the case that f(x) does not have any

non-constant reciprocal factor. The basic idea here is to make use of the
third author’s work in [9] (see also Theorem 74 in [11]). For a polynomial
F

(

x1, . . . , xr, x
−1

1
, . . . , x

−1

r

)

, in the variables x1, . . . , xr and their reciprocals

x
−1

1
, . . . , x

−1

r , we define

J F = x
u1

1
· · ·xur

r F
(

x1, . . . , xr, x
−1

1
, . . . , x

−1

r

)

,

where each uj is an integer chosen as small as possible so that J F is a
polynomial in x1, . . . , xr. In the way of examples, if

F = x
2 + 4x−1

y + y
3 and G = 2xyw − x

2
z
−3

w − 12w ,

then
J F = x

3 + 4y + xy
3 and J G = 2xyz

3 − x
2 − 12z3

.

In particular, note that although w is a variable in G, the polynomial J G

does not involve w. We call a multi-variable polynomial F (x1, . . . , xr) ∈
Q[x1, . . . , xr] reciprocal if

J F
(

x
−1

1
, . . . , x

−1

r

)

= ±F (x1, . . . , xr) .

For example, x1x2 − x1 − x2 + 1 and x1x2 − x3x4 are reciprocal. Note that
this is consistent with our definition of a reciprocal polynomial f(x) ∈ Z[x].

To motivate the next result and begin our approach, we set

F (x1, . . . , xr) = arxr + · · · + a1x1 + a0 ∈ Z[x1, . . . , xr] .

The plan is to associate the factorization of f(x) = F (xd1 , x
d2 , . . . , x

dr) with
the factorization of a multi-variable polynomial of the form

J F
(

y
m11

1
· · · ym1t

t , . . . , y
mr1

1
· · · ymrt

t

)

,

where the number of variables t is ≤ r and mij ∈ Z for 1 ≤ i ≤ r and
1 ≤ j ≤ t. The above multi-variable polynomial can be expressed as

y
u1

1
· · ·yut

t F
(

y
m11

1
· · · ym1t

t , . . . , y
mr1

1
· · · ymrt

t

)

,

where
uj = −min{m1j , m2j , . . . , mrj} for 1 ≤ j ≤ t . (5)



Michael Filaseta, Andrew Granville and Andrzej Schinzel 167

To make the connection with the factorization of f(x), we want the matrix
M = (mij) to be such that





d1

...
dr



 = M





v1

...
vt



 (6)

for some integers v1, v2, . . . , vt. In this way, the substitution yj = x
vj for

1 ≤ j ≤ t takes any factorization

y
u1

1
· · · yut

t F
(

y
m11

1
· · ·ym1t

t , . . . , y
mr1

1
· · · ymrt

t

)

= F1(y1, . . . , yt) · · ·Fs(y1, . . . , yt)
(7)

in Z[y1, . . . , yt] into the form

x
u1v1+···+utvtF

(

x
d1 , x

d2 , . . . , x
dr

)

= F1

(

x
v1 , . . . , x

vt

)

· · ·Fs

(

x
v1 , . . . , x

vt

)

. (8)

We restrict our attention to factorizations in (7) where the Fi(y1, . . . , yt) are
non-constant. We will be interested in the case that s is maximal; in other
words, we will want the right-hand side of (7) to be a complete factorization
of the left-hand side of (7) into irreducibles over Q. For achieving the results
in this paper, we want some algorithm for obtaining such a complete fac-
torization of multi-variable polynomials; among the various sources for this,
we note that A.K. Lenstra’s work in [6] provides such an algorithm. For the
moment, though, we need not take s maximal.

Since f(x) = F
(

x
d1 , x

d2 , . . . , x
dr

)

, the above describes a factorization of
f(x), except that we need to take some caution as some vj may be negative
so the expressions Fi(x

v1 , . . . , x
vt) may not be polynomials in x. For 1 ≤ i ≤ s,

define wi as the integer satisfying

J Fi

(

x
v1 , . . . , x

vt

)

= x
wiFi

(

x
v1 , . . . , x

vt

)

. (9)

We obtain from (8) that

x
u1v1+···+utvt+w1+···+wsf(x) =

s
∏

i=1

x
wiFi

(

x
v1 , . . . , x

vt

)

.

The definition of wi implies that this product is over polynomials in Z[x] that
are not divisible by x. The conditions a0 6= 0 and d0 = 0 imposed on f(x) in
the introduction imply that f(x) is not divisible by x. Hence, the exponent
of x appearing on the left must be 0, and we obtain the factorization

f(x) =

s
∏

i=1

x
wiFi

(

x
v1 , . . . , x

vt

)

=

s
∏

i=1

J Fi

(

x
v1 , . . . , x

vt

)

. (10)

The factorization given in (10) is crucial to our algorithm. As we are in-
terested in the case that f(x) has no non-constant reciprocal factor, we
restrict our attention to this case. From (10), we see that the polynomi-
als x

wiFi(x
v1 , . . . , x

vt) cannot have a non-constant reciprocal factor. There
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are, however, still two possibilities that we need to consider for each i ∈
{1, 2, . . . , s}:

(i′) Fi(y1, . . . , yt) is reciprocal.
(ii′) J Fi

(

x
v1 , . . . , x

vt

)

∈ Z.

Although we will not need to know a connection between (i′) and (ii′), we
show here that if (i′) holds for some i, then (ii′) does as well. We consider
then the possibility that

J Fi

(

y
−1

1
, . . . , y

−1

t

)

= ±Fi(y1, . . . , yt) . (11)

In other words, suppose that

y
e1

1
· · ·yet

t Fi

(

y
−1

1
, . . . , y

−1

t

)

= ±Fi(y1, . . . , yt) , (12)

where ej = ej(i) is the degree of Fi(y1, . . . , yt) as a polynomial in yj. Substi-
tuting yj = x

vj into (12), we obtain

x
wi+e1v1+···+etvtFi

(

x
−v1 , . . . , x

−vt

)

= ±x
wiFi

(

x
v1 , . . . , x

vt

)

. (13)

By the definition of wi, the polynomial on the right does not vanish at 0.
Assume (ii′) does not hold. Let α be a zero of this polynomial. Then substi-
tuting x = 1/α into (13) shows that 1/α is also a zero. On the other hand, we
have already demonstrated in (10) that the right-hand side of (13) is a factor
of f(x). This contradicts that f(x) has no non-constant reciprocal factor.
Hence, (ii′) holds.

We make use of a special case of a result due to the third author in [9].
In particular, the more general result implies that the above idea can in
fact always be used to factor f(x) if f(x) has two nonreciprocal irreducible
factors. In other words, there exist a matrix M and vj satisfying (6) and a
factorization of the form (7) that leads to a non-trivial factorization of f(x),
if it exists, through the substitution yj = x

vj . We are interested in the case
that f(x) has no non-constant reciprocal factor. In this case, we can obtain
a complete factorization of f(x) into irreducibles.

Theorem 1. Fix

F = F (x1, . . . , xr) = arxr + · · ·+ a1x1 + a0 ,

where the aj are nonzero integers. There exists a finite computable set of ma-

trices S with integer entries, depending only on F , with the following property:

Suppose the vector
−→
d = 〈d1, d2, . . . , dr〉 is in Zr with dr > dr−1 > · · · > d1 > 0

and such that f(x) = F (xd1 , x
d2 , . . . , x

dr) has no non-constant reciprocal fac-

tor. Then there is an r × t matrix M = (mij) ∈ S of rank t ≤ r and a vector−→
v = 〈v1, v2, . . . , vt〉 in Zt such that (6) holds and the factorization given by

(7) in Z[y1, . . . , yt] of a polynomial in t variables y1, y2, . . . , yt as a product

of s irreducible polynomials over Q implies the factorization of f(x) given by

(10) as a product of polynomials in Z[x] each of which is either irreducible

over Q or a constant.
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We are ready now to apply the above to assist us in Algorithm A. As
suggested by the statement of Theorem 1, we take the coefficients aj of f(x)
and consider the multi-variable polynomial F = F (x1, . . . , xr). We compute
the set S. Since F is a linear polynomial with r + 1 terms and height H,
the time required to compute S is Or,H(1). Since f(x) = F (xd1 , . . . , x

dr) has
no non-constant reciprocal factors, there is a matrix M = (mij) ∈ S of rank
t ≤ r and a vector −→

v in Zt as in Theorem 1. We go through each of the
Or,H(1) matrices M in S and solve for the vectors −→

v = 〈v1, v2, . . . , vt〉 in Zt

satisfying
−→
d = M

−→
v , where t is the number of columns in M and we interpret−→

d and −→
v as column vectors. From the definition of S, we have that the rank

of M is t and t ≤ r. Hence, there can be at most one such vector −→
v for each

M ∈ S. However, for each
−→
d , there may be many M ∈ S and −→

v for which−→
d = M

−→
v , and we will consider all of them.

We make use of the following simple result in this section and the next.

Theorem D. There is an algorithm with the following property. Given an

r × t integral matrix M = (mij) of rank t ≤ r and max{|mij|} = Or,H(1)

and given an integral vector
−→
d = 〈d1, . . . , dr〉 with max{|dj|} = Or,H(n), the

algorithm determines whether there is an integral vector −→
v = 〈v1, . . . , vt〉 for

which (6) holds, and if such a −→
v exists, the algorithm outputs the solution

vector −→
v . Furthermore, max{|vj|} = Or,H(n) and the algorithm runs in time

Or,H(log n).

Proof. There are a variety of ways we can determine if
−→
d = M

−→
v has a

solution and to determine the solution if there is one within the required
time Or,H(log n). We use Gaussian elimination. Performing elementary row
operations on M and multiplying by entries from the matrix as one proceeds
to use only integer arithmetic allows us to rewrite M in the form of an r × t

matrix M
′ = (m′

ij) with each m
′
ij ∈ Z and the first t rows of M

′ forming
a t × t diagonal matrix with nonzero integers along the diagonal. These
computations only depend on the entries of M and, hence, take time Or,H(1).
We perform the analogous row operations and integer multiplications on the

vector
−→
d = 〈d1, d2, . . . , dr〉 to solve

−→
d = M

−→
v for −→

v . As the entries of M

are integers that are Or,H(1) and each dj is an integer that is Or,H(n), these
operations take time Or,H(log n). We are thus left with an equation of the

form
−→
d
′ = M

′−→
v where the entries of M

′ are integers that are Or,H(1) and

the components of
−→
d
′ = 〈d′

1
, d

′
2
, . . . , d

′
r〉 are integers that are Or,H(n).

For each j ∈ {1, 2, . . . , t}, we check if d
′
j ≡ 0 (mod m

′
jj). If for some

j ∈ {1, 2, . . . , t} we have d
′
j 6≡ 0 (mod m

′
jj), then a solution to the original

equation
−→
d = M

−→
v , if it exists, must be such that vj 6∈ Z. In this case,

an integral vector −→
v does not exist. Now, suppose instead that d

′
j ≡ 0

(mod m
′
jj) for every j ∈ {1, 2, . . . , t}. Then we divide d

′
j by m

′
jj to determine

the vector −→
v . This vector may or may not be a solution to the equation
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−→
d = M

−→
v . We check whether it is by a direct computation. If it is not

a solution to the equation
−→
d = M

−→
v , then there are no solutions to the

equation. Otherwise, −→v is an integral vector satisfying
−→
d = M

−→
v . Checking

whether d
′
j ≡ 0 (mod m

′
jj) for 1 ≤ j ≤ t, solving for −→

v if it holds, and

checking whether
−→
d = M

−→
v all takes time Or,H(log n). We also have Or,H(n)

as a bound for the absolute value of the components vj of −→v . We output −→
v

if it exists which takes time Or,H(log n). Combining the running times above,
the theorem follows. �

Algorithm D is performed for each of the Or,H(1) matrices M in S. The
running time for each application of Theorem D is Or,H(log n), so the total
running time spent applying Algorithm D for the various Or,H(1) matrices
in S is Or,H(log n). This leads to Or,H(1) factorizations of the form given
in (7) into irreducibles, each having a potentially different value for s. For
each of these, we compute the values of Fi

(

x
v1 , . . . , x

vt

)

and determine wi

as in (9). We produce then Or,H(1) factorizations of f(x) as in (10). As
we obtain these factorizations, we keep track of the number of non-constant
polynomials x

wiFi

(

x
v1 , . . . , x

vt

)

appearing in (10). We choose a factorization

for which this number is maximal. Recalling that (10) follows from
−→
d = M

−→
v

and (7), we deduce from Theorem 1 that the factorization of f(x) we have
chosen provides a factorization of f(x) with each x

wiFi

(

x
v1 , . . . , x

vt

)

either
irreducible or constant. Recalling that the polynomials Fi(y1, . . . , yt) in (7)
are independent of n and that the components of −→v are bounded in absolute
value by Or,H(n), we see that producing the factorization of f(x) into irre-
ducibles and constants as in (10) takes time Or,H(log n). For a factorization
of f(x) into irreducibles over Q, we multiply together the constants appearing
on the right of (10) and one of the irreducible polynomials J Fi

(

x
v1 , . . . , x

vt

)

.
This does not affect the bound given for the running time of Algorithm A.

Thus, we have demonstrated an algorithm for Theorem A as stated in
the introduction and justified that the algorithm satisfies the statement of
Theorem A as well as (i), (ii) and (iii). Combining the above running time
estimates, we deduce that the algorithm also has the stated running time
bound given in Theorem A.

3. The Proof of Theorem B

As mentioned in the introduction, our proof of Theorem B relies heavily on
the recent work of Bombieri and Zannier outlined by Zannier in an appendix
in [11]. In particular, as a direct consequence of their more general work, we
have

Theorem 2. Let

F (x1, . . . , xk), G(x1, . . . , xk) ∈ Q[x1, . . . , xk]
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be coprime polynomials. There exists an effectively computable number B(F, G)
with the following property. If −→u = 〈u1, . . . , uk〉 ∈ Zk, ξ 6= 0 is algebraic and

F
(

ξ
u1, . . . , ξ

uk

)

= G
(

ξ
u1, . . . , ξ

uk

)

= 0 ,

then either ξ is a root of unity or there exists a nonzero vector −→
v ∈ Zk having

components bounded in absolute value by B(F, G) and orthogonal to −→
u .

It is important for our algorithm that the quantities B(F, G) are effectively
computable. We note that the fact B(F, G) is effectively computable is not
explicitly stated in the appendix of [11], but U. Zannier (private communi-
cation) has pointed out that the approach given there does imply that this
is the case. The more recent paper [1] notes explicitly that B(F, G) can be
calculated.

Our description of Algorithm B has similarities to the third author’s ap-
plication of Theorem 2 in [10] and [11]. In particular, we make use of the
following lemma which is Corollary 6 in Appendix E of [11]. A proof is given
there.

Lemma 2. Let ` be a positive integer and −→
v ∈ Z` with −→

v nonzero. The

lattice of vectors −→
u ∈ Z` orthogonal to −→

v has a basis −→
v1

′
,
−→
v2

′
, . . . ,

−−→
v`−1

′ such

that the maximum absolute value of a component of any vector −→
vj

′ is bounded

by `/2 times the maximum absolute value of a component of −→v .

For our algorithm, we can suppose that f(x) does not have a cyclotomic
factor and do so. We consider only the case that f(0)g(0) 6= 0 as computing
gcdZ

(

f(x), g(x)
)

can easily be reduced to this case by initially removing an
appropriate power of x from each of f(x) and g(x) (that is, by subtracting the
least degree of a term from each exponent). This would need to be followed
up by possibly multiplying by a power of x after our gcd computation.

We furthermore only consider the case that the content of f(x), that is
the greatest common divisor of its coefficients, and the content of g(x) are
1. Otherwise, we simply divide by the contents before proceeding and then
multiply the final result by the greatest common divisor of the two contents.

We express our two polynomials in the form

f(x) =
k

∑

j=0

ajx
dj and g(x) =

k
∑

j=0

bjx
dj ,

where above we have possibly extended the lists of exponents and coefficients
describing f(x) and g(x) so that the exponent lists are identical and the
coefficient lists are allowed to include coefficients which are 0. Also, we take
dk > dk−1 > · · · > d1 > 0. Thus, d0 = 0, a0b0 6= 0 and k ≤ 2r. The time
required to modify f(x) and g(x) so that they are not divisible by x and
have content 1 and to adjust the exponent and coefficient lists as above is
Or,H(log n).
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Before continuing with the algorithm, we motivate it with some discussion.
Let w(x) denote gcdZ

(

f(x), g(x)
)

. We will apply Theorem 2 to construct two
finite sequences of polynomials in several variables Fu and Gu with integer

coefficients and a corresponding finite sequence of vectors
−→
d

(u) that will en-
able us to determine a polynomial in Z[x] that has the common zeros, to the
correct multiplicity, of f(x) and g(x). This then will allow us to compute
w(x).

Let ξ be a zero of w(x), if it exists. Observe that ξ 6= 0, and since ξ is a
zero of f(x) which has no cyclotomic factors, we have ξ is not a root of unity.
Since ξ is a common zero of f(x) and g(x), we have

k
∑

j=0

ajξ
dj =

k
∑

j=0

bjξ
dj = 0 .

We recursively construct Fu, Gu and
−→
d

(u), for 0 ≤ u ≤ s, where s is to be
determined, beginning with

F0 = F0(x1, . . . , xk) =
k

∑

j=0

ajxj and G0 = G0(x1, . . . , xk) =
k

∑

j=0

bjxj ,

(14)

and
−→
d

(0) = 〈d1, d2, . . . , dk〉. As u increases, the number of variables defining
Fu and Gu will decrease. The value of s then will be ≤ k. Observe that

F0

(

x
d1 , . . . , x

dk

)

= f(x) and G0

(

x
d1 , . . . , x

dk

)

= g(x) .

We deduce that F0 and G0, being linear, are coprime in Q[x1, . . . , xk] and
that

F0

(

ξ
d1, . . . , ξ

dk

)

= G0

(

ξ
d1 , . . . , ξ

dk

)

= 0 . (15)

Now, suppose for some u ≥ 0 that nonzero polynomials Fu and Gu in

Z[x1, . . . , xku
] and a vector

−→
d

(u) =
〈

d
(u)

1
, . . . , d

(u)

ku

〉

∈ Zku have been deter-
mined, where ku < ku−1 < · · · < k0 = k. Furthermore, suppose that Fu and
Gu are coprime in Q[x1, . . . , xku

] and that we have at least one zero ξ of w(x)
such that

Fu

(

ξ
d
(u)

1 , . . . , ξ
d
(u)

ku

)

= Gu

(

ξ
d
(u)

1 , . . . , ξ
d
(u)

ku

)

= 0 . (16)

In particular, ξ 6= 0 and ξ is not a root of unity. Note that the d
(u)

j may be
negative. We will require

J Fu

(

x
d
(u)

1 , . . . , x
d
(u)

ku

)

| f(x) and J Gu

(

x
d
(u)

1 , . . . , x
d
(u)

ku

)

| g(x) . (17)

Observe that J Fu

(

x
d
(u)

1 , . . . , x
d
(u)

ku

)

and f(x) are in Z[x]. We take (17) to mean
that there is a polynomial h(x) ∈ Z[x] such that

f(x) = h(x) · J Fu

(

x
d
(u)

1 , . . . , x
d
(u)

ku

)

,
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with an analogous equation holding for g(x) and J Gu

(

x
d
(u)

1 , . . . , x
d
(u)

ku

)

. In par-

ticular, we want J Fu

(

x
d
(u)

1 , . . . , x
d
(u)

ku

)

and J Gu

(

x
d
(u)

1 , . . . , x
d
(u)

ku

)

to be nonzero.
Note that these conditions which are being imposed on Fu and Gu are satis-
fied for u = 0 provided w(x) is not constant. For 0 ≤ u < s, we describe next
how to recursively construct Fu+1 and Gu+1 having analogous properties. The
specifics of the algorithm and its running time will be discussed later.

There is a computable bound B(Fu, Gu) as described in Theorem 2. We
deduce that there is a nonzero vector −→

v = 〈v1, v2, . . . , vku
〉 ∈ Zku such that

each |vi| ≤ B(Fu, Gu) and −→
v is orthogonal to

−→
d

(u). From Lemma 2, there
is a ku × (ku − 1) matrix M with each entry of M having absolute value

≤ kuB(Fu, Gu)/2 and such that
−→
d

(u) = M−→
v

(u) for some −→
v

(u) ∈ Zku−1,
where we view the vectors as column vectors. We define integers mij (written

also mi,j) and v
(u)

j , depending on u, by the conditions

M =





m11 · · · m1,ku−1

...
. . .

...
mku1 · · · mku,ku−1



 and −→
v

(u) =
〈

v
(u)

1
, . . . , v

(u)

ku−1

〉

.

The relations
xi = y

mi1

1
· · · ymi,ku−1

ku−1
for 1 ≤ i ≤ ku

transform the polynomials Fu(x1, . . . , xku
) and Gu(x1, . . . , xku

) into polynomi-
als in some, possibly all, of the variables y1, . . . , yku−1. These new polynomials
we call Fu and Gu, respectively. More precisely, we define

Fu(y1, . . . , yku−1) = J Fu

(

y
m11

1
· · · ym1,ku−1

ku−1
, . . . , y

mku1

1
· · · ymku,ku−1

ku−1

)

(18)

and

Gu(y1, . . . , yku−1) = J Gu

(

y
m11

1
· · · ym1,ku−1

ku−1
, . . . , y

mku1

1
· · ·ymku,ku−1

ku−1

)

. (19)

The polynomials Fu and Gu will depend on the matrix M so that there may
be many choices for Fu and Gu for each Fu and Gu. We need only consider
one such Fu and Gu and do so. Note that this still may require considering

various M until we find one for which
−→
d

(u) = M−→
v

(u) is satisfied for some−→
v

(u) ∈ Zku−1. The equation
−→
d

(u) = M−→
v

(u) implies that for some integers
ef(u) and eg(u) we have

Fu

(

x
v
(u)

1 , . . . , x
v
(u)

ku−1

)

= x
ef (u)

Fu

(

x
d
(u)

1 , . . . , x
d
(u)

ku

)

(20)

and
Gu

(

x
v
(u)

1 , . . . , x
v
(u)

ku−1

)

= x
eg(u)

Gu

(

x
d
(u)

1 , . . . , x
d
(u)

ku

)

. (21)

In particular, Fu and Gu are nonzero. Also,

J Fu

(

x
v
(u)

1 , . . . , x
v
(u)

ku−1

)

| f(x) and J Gu

(

x
v
(u)

1 , . . . , x
v
(u)

ku−1

)

| g(x) . (22)

Furthermore, with ξ as in (16), we have

Fu

(

ξ
v
(u)

1 , . . . , ξ
v
(u)

ku−1

)

= Gu

(

ξ
v
(u)

1 , . . . , ξ
v
(u)

ku−1

)

= 0 .
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The idea is to suppress the variables, if they exist, which do not occur in Fu

and Gu and the corresponding components of −→v (u) to obtain the polynomials

Fu+1 and Gu+1 and the vector
−→
d

(u+1) for our recursive construction. However,
there is one other matter to consider. The polynomials Fu and Gu may not
be coprime, and we require Fu+1 and Gu+1 to be coprime. Hence, we adjust
this idea slightly.

Let

Du = Du(y1, . . . , yku−1) = gcdZ(Fu,Gu) ∈ Z[y1, . . . , yku−1] . (23)

Recall that f(0)g(0) 6= 0. Hence, (20), (21) and (22) imply that the polyno-

mial J Du

(

x
v
(u)

1 , . . . , x
v
(u)

ku−1

)

divides gcdZ(f, g) in Z[x]. We define

Fu+1 =
Fu(y1, . . . , yku−1)

Du(y1, . . . , yku−1)
and Gu+1 =

Gu(y1, . . . , yku−1)

Du(y1, . . . , yku−1)
, (24)

and set ku+1 ≤ ku − 1 to be the total number of variables y1, . . . , yku−1 ap-
pearing in Fu+1 and Gu+1. Note that Fu+1 and Gu+1 are coprime and that
(17) holds with u replaced by u + 1 and the appropriate change of variables.

We describe next how the recursive construction will end. Suppose we

have just constructed Fu, Gu and
−→
d

(u) and proceed as above to the next step

of constructing Fu+1, Gu+1 and
−→
d

(u+1). At this point, Du−1 will have been

defined but not Du. We want to find M and a −→
v

(u) such that
−→
d

(u) = M−→
v

(u)

where M is a ku × (ku − 1) matrix with entries bounded in absolute value
by kuB(Fu, Gu)/2. So we compute B(Fu, Gu) and the bound kuB(Fu, Gu)/2
on the absolute values of the entries of M. We consider such M and apply

Algorithm D to see if there is an integral vector −→
v

(u) for which
−→
d

(u) =
M−→

v
(u). Once such an M and −→

v
(u) are found, we can proceed with the

construction of Fu+1 and Gu+1 given above. On the other hand, it is possible
that no such M and −→

v
(u) will be found. Given Theorem 2, this will be the

case only if the supposition that (16) holds for some zero ξ of w(x) is incorrect.
In particular, (16) does not hold for some zero ξ of w(x) if Fu and Gu are
coprime polynomials in < 2 variables (i.e., ku ≤ 1), but it is also possible that
(16) does not hold for some u with Fu and Gu polynomials in ≥ 2 variables
(i.e., ku ≥ 2). Given that M is a ku × (ku − 1) matrix, we consider it to be

vacuously true that no M and −→
v

(u) exist satisfying
−→
d

(u) = M−→
v

(u) in the
case that ku ≤ 1. If no such M and −→

v
(u) exist, we consider the recursive

construction of the polynomials Fu and Gu complete and set s = u. We will
want the values of Du for every 1 ≤ u ≤ s−1, so we save these as we proceed.

The motivation discussed above can be summarized into a procedure to be
used for Algorithm B as follows. Beginning with F0 and G0 as in (14) and−→
d

(0) = 〈d1, . . . , dk〉, we construct the multi-variable polynomials Fu and Gu

and vectors
−→
d

(u) =
〈

d
(u)

1
, . . . , d

(u)

ku

〉

∈ Zku recursively. Given Fu, Gu and
−→
d

(u),
we compute B(Fu, Gu) and search for a ku × (ku − 1) matrix M with integer
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entries having absolute value ≤ kuB(Fu, Gu)/2 for which
−→
d

(u) = M−→
v

(u) is

solvable with −→
v

(u) =
〈

v
(u)

1
, . . . , v

(u)

ku−1

〉

∈ Zku−1. We check for solvability and

determine the solution −→
v

(u) if it exists by using Algorithm D. If no such M
and −→

v
(u) exist, then we set s = u and stop our construction. Otherwise, once

such an M = (mij) and −→
v

(u) are determined, we define Fu+1 and Gu+1 using
(18), (19), (23) and (24). After using (24) to construct Fu+1 and Gu+1, we
determine the variables y1, . . . , yku−1 which occur in Fu+1 and Gu+1 and define−→
d

(u+1) as the vector with corresponding components from v
(u)

1
, . . . , v

(u)

ku−1
; in

other words, if yj is the ith variable occurring in Fu+1 and Gu+1, then v
(u)

j is

the ith component of
−→
d

(u+1).
For the running time for this recursive construction, we use that B(Fu, Gu)

is Or,H(1) as u varies and, furthermore, the numbers B(Fu, Gu) can be com-
puted in time Or,H(1). In particular, this implies that for a fixed u, there are
Or,H(1) choices for M and, hence, a total of Or,H(1) possible values for Fu+1

and Gu+1 independent of the value of
−→
d

(u). In other words, without even
knowing the values of d1, . . . , dk, we can use Theorem 2 to deduce that there
are at most Or,H(1) possibilities for F1 and G1. For each of these possibili-
ties, another application of Theorem 2 implies that there are at most Or,H(1)
possibilities for F2 and G2. And so on. As s ≤ k ≤ 2r, we deduce that the
total number of matrices M that we need to consider during the recursive
construction is bounded by Or,H(1). The recursive construction depends on

n only when applying Theorem D to see if
−→
d

(u) = M−→
v

(u) holds for some−→
v

(u) and to determine −→
v

(u) if it exists. For a fixed M, Theorem D implies
that these computations can be done in time Or,H(log n). As the total num-
ber of M to consider is bounded by Or,H(1), we deduce that the recursive

construction of the Fu, Gu and
−→
d

(u) takes time Or,H(log n).
As we proceed in our recursive construction of the Fu and Gu, an important

aspect of the construction is that the mij are bounded in absolute value by
Or,H(1) and, hence, the coefficients and exponents appearing in Fu and Gu

are bounded by Or,H(1). In other words, Fu and Gu can be written in time
Or,H(1). Another important aspect of the construction is to note that as we
are dividing by Du to construct Fu+1 and Gu+1, we obtain not simply that

J Du

(

x
v
(u)

1 , . . . , x
v
(u)

ku−1

)

divides gcdZ(f, g) in Z[x] but also

u
∏

j=0

J Dj

(

x
v
(j)

1 , . . . , x
v
(j)

kj−1

)

divides gcdZ(f, g) in Z[x] . (25)

This can be seen inductively by observing that

J Fu

(

x
v
(u)

1 , . . . , x
v
(u)

ku−1

)

=
f(x)

u−1
∏

j=0

J Dj

(

x
v
(j)

1 , . . . , x
v
(j)

kj−1

)

(26)
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and

J Gu

(

x
v
(u)

1 , . . . , x
v
(u)

ku−1

)

=
g(x)

u−1
∏

j=0

J Dj

(

x
v
(j)

1 , . . . , x
v
(j)

kj−1

)

. (27)

Algorithm B ends by making use of the identity

gcdZ

(

f(x), g(x)
)

=

s−1
∏

u=0

J Du

(

x
v
(u)

1 , . . . , x
v
(u)

ku−1

)

. (28)

We justify (28). Recall that we have denoted the left side by w(x). Observe
that (25) implies that the expression on the right of (28) divides w(x). By
the definition of s, when we arrive at u = s in our recursive construction, (16)
fails to hold for every zero ξ of w(x). Therefore, taking u = s−1 in (24), (26)
and (27) implies that the right-hand side of (28) vanishes at all the zeros of
w(x) and to the same multiplicity. As noted earlier, we are considering the
case that the contents of f(x) and g(x) are 1. We deduce that (28) holds.
Observe that the computation of gcdZ

(

f(x), g(x)
)

by expanding the right
side of (28) involves Or,H(1) additions of exponents of size Or,H(n). This
computation can be done in time Or,H(log n). Theorem B follows.
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CONSEQUENCES OF THE CONTINUITY OF THE MONIC

INTEGER TRANSFINITE DIAMETER

JAN HILMAR

Abstract. We consider the problem of determining the monic integer

transfinite diameter tM (I) for real intervals I of length less than 4. We

show that tM ([0, x]), as a function in x > 0, is continuous, therefore

disproving two conjectures due to Hare and Smyth. Consequently, for

n > 2 ∈ N, we define the quantity

bmax(n) = sup
b>

1

n

{

b
∣

∣tM ([0, b]) = 1

n

}

and give lower and upper bounds of bmax(n). Finally, we improve the lower

bound for bmax(n) for 3 ≤ n ≤ 8.

1. Introduction

Let I ⊂ R be a closed interval of length less than 4 and Mn[x] be the set of
monic polynomials of degree n with integer coefficients. We define the monic

integer transfinite diameter tM(I) of I to be the quantity

tM(I) = lim
n→∞

inf
pn∈Mn

‖pn‖1/n

I . (1)

Here ‖pn‖I= supx∈I |pn(x)| is the supremum norm of the polynomial pn(x).
The problem of determining the monic integer transfinite diameter was first
tackled by Borwein, Pinner and Pritsker in [3]. Their techniques were further
developed by Hare and Smyth in [4]. The problem is intimately connected to
the problem of determining tZ(I), the integer transfinite diameter, where the
condition that the polynomials be monic is removed. Interestingly, removing
this condition makes the problem much harder, as no exact values of tZ(I) are
known, but tM(I) can be computed explicitly in some cases. The following
lemma is an essential tool in doing so.

Lemma 1 ([3]). Let q(x) = a0+· · ·+adx
d ∈ Zn[x] be an irreducible polynomial

with ad > 1 and all roots in the closed interval I ⊂ R of finite length. Further,

assume that pn(x) ∈ Mn[x]. Then

a
− 1

d

d ≤ ‖pn‖
1

n

I .

2000 Mathematics Subject Classification. 11C08.

Key words and phrases. Monic integer transfinite diameter, monic integer Chebyshev

constant.
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The proof of this essentially classical result can be found in [3] or [4] and
will be omitted here.

As a consequence, a
−1/d

d ≤ tM(I), so that polynomials q(x) as in the lemma
are used to determine lower bounds on tM(I). As a consequence, they are

called obstruction polynomials for tM (I) with obstruction a
−1/d

d . Since all
obstructions give a lower bound, it is of interest to find the supremum

m(I) = sup
{

a
−1/d

d

∣∣∣ q(x) = adx
d + · · · + a0, ad > 1

}
.

Here the supremum is taken over all polynomials with integer coefficients and
all roots in the interval I. If the supremum is attained, m(I) is called the
maximal obstruction for I.

Suppose now we have an interval I with maximal obstruction m(I) and
find pn(x) ∈ Mn with ‖pn‖I= m(I)n. In this case, m(I) ≥ tM(I) ≥ m(I), so
that we have determined an exact value for tM(I). Such pn(x), if it exists, is
said to attain the maximal obstruction. Some examples of this situation are
as follows:

(1) If I = [0, 1], then 1

2
is the maximal obstruction by q(x) = 2x − 1. At

the same time, ‖x(1 − x)‖I=
1

4
, so that tM(I) = 1

2
.

(2) For an integer n > 1, consider In = [0, 1

n
]. Then 1

n
is the maximal

obstruction by q(x) = nx − 1. At the same time, ‖x‖In
= 1

n
, so that

tM(In) = 1

n
.

These are just some examples to illustrate the technique. A more complete
list of known values of tM (I) can be found in [3] and [4].

It was shown in [4] that the maximal obstruction is not always attained
by some pn(x) and explicit conditions for when it cannot be attained were
given. The authors conjecture, however, that tM(I) = m(I) for all I. That
this is not the case is a consequence of the continuity of a particular function,
proved in Section 2.

2. Continuity of tM(x), x ≥ 0

In [4], the authors consider intervals of the form I = [0, b], where, for
1 < n ∈ N, we have 1

n
< b <

1

n−1
. From q(x) = nx − 1, we know that

tM([0, b]) ≥ 1

n
and equality holds in a neighbourhood to the right of 1

n
(see

Theorem 2). Much more interesting is the behaviour of the function

tM(x) = tM([0, x]) (2)

for x ≥ 0 to the left of 1

n
, n > 1. Hare and Smyth suspected that the function

had a discontinuity at x = 1

n
, which would agree with their conjecture that

m(I) = tM(I).
To study the behaviour of tM(x), it is useful to look back at the classical

paper [2] of Borwein and Erdélyi in the theory of the (non-monic) transfinite
diameter. In this paper, the authors define the function tZ(x) in the equivalent
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way and state that this function is continuous, though without the details of
the proof. We will now provide the details for tM(x).

Let Tn(x) be the n
th Chebyshev polynomial on [−1, 1], defined by

Tn(x) = cos(n arccos x) . (3)

This can be rewritten as

Tn(x) = 1

2

[(
x +

√
x2 − 1

)n

+
(
x −

√
x2 − 1

)n]
.

From this it immediately follows that

Tn(x) ≤
(
x +

√
x2 − 1

)n

for x ≥ 1 . (4)

We will also need Chebyshev’s inequality from [1]:

Lemma 2. Let q ∈ R[x]. Then, for x ∈ R\[−1, 1],
∣∣q(x)

∣∣ ≤
∣∣Tn(x)

∣∣ ‖q‖[−1,1] . (5)

We can then prove:

Lemma 3. Let b > b0 > 0, pn ∈ Rn[y]. Then, for every δ > 0, there exists

kb,δ, not depending on n, such that

‖pn‖[0,b+δ] ≤ (1 + kb,δ)
n ‖pn‖[0,b] , (6)

with limδ→0 kb,δ = 0 for fixed b.

Proof. Given pn ∈ Rn[y], let y ∈ [0, b] and x = 2

b
y − 1. Then x ∈ [−1, 1]. Put

qn(x) = pn(y). Then, by Lemma 2, for x 6∈ [−1, 1], y 6∈ [0, b], we have

|pn(y)| = |qn(x)| ≤ |Tn(x)| ‖qn‖[−1,1]

=
∣∣Tn

(
2

b
y − 1

)∣∣ ‖pn‖[0,b] .

Note also that

max
y∈[b,b+δ]

∣∣Tn

(
2

b
y − 1

)∣∣ = max
x∈[1,1+2

δ

b
]

|Tn(x)|

= ‖Tn‖[1,1+2
δ

b
]

.

This clearly implies that

‖pn‖[b,b+δ] ≤ ‖Tn‖[1,1+2
δ

b
]
‖pn‖[0,b] .

Using inequality (4) above, we see that

‖Tn‖[1,1+2
δ

b
]

≤
(

1 + 2 δ
b

(
1 +

√
1 + b

δ

))n

.
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The result now follows by letting kb,δ = 2 δ
b

(
1 +

√
1 + b

δ

)
> 0 and observing

that

‖pn‖[0,b+δ] = max
{
‖pn‖[0,b], ‖pn‖[b,b+δ]

}

≤ max
{
‖pn‖[0,b], (1 + kb,δ)

n ‖pn‖[0,b]

}

= (1 + kb,δ)
n ‖pn‖[0,b] .

�

Using this inequality, we also get that, for b, δ > 0 fixed,

‖pn‖[0,b−δ] ≥ ‖pn‖[0,b]

(
1

1 + kb−δ,δ

)n

. (7)

Note also that limδ→0 kb−δ,δ = 0.
We can now use this to prove

Theorem 1. The function tM(x) is continuous on (0,∞).

Proof. First, note that tM(x) is (non-strictly) increasing in x. Let b ∈ (0,∞),
ε > 0 and choose δ = min{δ1, δ2}, where δ1 is chosen such that kb,δ1 <

ε
tM (b)

and δ2 is such that
kb−δ2,δ2

1+kb−δ2,δ2

<
ε

tM (b)
.

Let 0 < |b − x| < δ. The argument splits into two cases:
(1) Suppose that 0 < b − x < δ ≤ δ1. Since tM(x) is increasing, we have

0 ≤ tM(x) − tM (b) ≤ tM (b + δ1) − tM(b)

= lim
n→∞

(
inf

pn∈Mn[x]

‖pn‖1/n

[0,b+δ1]
− inf

pn∈Mn[x]

‖pn‖1/n

[0,b]

)

≤ lim
n→∞

(
inf

pn∈Mn[x]

kb,δ1 ‖pn‖1/n

[0,b]

)

= tM (b)kb,δ1 < ε .

(2) Now assume that 0 < x − b < δ ≤ δ2. Here, we get

0 ≤ tM(b) − tM (x) ≤ tM (b) − tM(b − δ2)

= lim
n→∞

(
inf

pn∈Mn[x]

‖pn‖1/n

[0,b]
− inf

pn∈Mn[x]

‖pn‖1/n

[0,b−δ2]

)

≤ lim
n→∞

(
inf

pn∈Mn[x]

(
kb−δ2,δ2

1 + kb−δ2,δ2

)
‖pn‖1/n

[0,b]

)

= tM (b)
kb−δ2,δ2

1 + kb−δ2,δ2

< ε .

Thus, for 0 < |b − x| < δ, we have |tM(b) − tM(x)| < ε for any b ∈ (0,∞),
proving continuity for x > 0. �
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As mentioned before, Borwein and Erdélyi stated this result for the (non-
monic) integer transfinite diameter. In fact, if An[x] ⊆ Rn[x] and

tA(I) = lim
n→∞

inf
06≡pn∈An[x]

‖pn‖
1

n

I , (8)

one can define tA(x) in the equivalent way and the prove continuity of this
function for x ≥ 0 as in Theorem 1.

The continuity of tM(x) sheds some light on conjectures made by Hare and
Smyth in [4]:

Conjecture 1 (Zero-endpoint interval conjecture). If I = [0, b] with b ≤ 1,
then tM(I) = 1

n
, where n = max

(
2, d1

b
e
)

is the smallest integer n ≥ 2 for

which 1

n
≤ b.

Conjecture 2 (Maximal obstruction implies tM(I) conjecture). If an interval

I of length less than 4 has a maximal obstruction m(I), then tM(I) = m(I).

Theorem 1 clearly shows Conjecture 1 to be false: since tM(x) is continuous
to the left of 1

n
, n ∈ N and tM([0, 1

n
]) = 1

n
, we cannot have tM ([0, b]) = 1

n+1

for all b <
1

n
, as claimed in the conjecture. A further implication is that for

these intervals, tM (I) 6= m(I), contrary to Conjecture 2.

3. The function bmax(n)

It turns out that tM(x) is indeed constant on a large interval to the right
of 1

n+1
, n ∈ N. We define for n > 1 ∈ N,

bmax(n) = sup
b> 1

n

{
b
∣∣tM(b) = 1

n

}
. (9)

For n = 1, this quantity is not finite, as tM(I) = 1 for |I| ≥ 4 (see [3] for
details). For n = 2, we can use the results in [4] to obtain 1.26 ≤ bmax(2) <

1.328. For n > 2, we have the following:

Theorem 2. Let n > 2 ∈ N. Then

1

n
+

1

n2(n − 1)
< bmax(n) ≤ 4n

(2n − 1)2
.

Proof. The first inequality follows from the polynomial

Pn(x) = x
n2−2(x2 − nx + 1) .

This polynomial, first used in [4], was shown to have the following proper-
ties:

(1) Pn( 1

n
) =

(
1

n

)n2

.

(2) P
′
n( 1

n
) = 0 and the polynomial has no other extrema in [0, 1

n−1
].

(3) Pn(x) has a root βn = 2

n+

√
n2−4

>
1

n
, and |Pn(x)| is strictly increasing

in (βn,
1

n−1
).
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These properties were used in [4] to show that ‖Pn ‖[0, 1

n
+ε]=

(
1

n

)n2

for some
ε > 0.

Evaluating Pn(x) at x = 1

n
+ 1

n2(n−1)
gives

∣∣∣∣Pn

(
1

n
+

1

n2(n − 1)

)∣∣∣∣ =

(
n

2 − n + 1

n2 − n

)n2

n
3 − 3n2 + 2n − 1

(n2 − n + 1)2
.

To show that this is indeed less than ( 1

n
)n2

, first note that the sequence
{(

n
2 − n

n2 − n + 1

)n2
}∞

n=1

is increasing and tends to e
−1. As it is increasing, we clearly have

(
n

2 − n

n2 − n + 1

)n2

≥
(

2

3

)4

for n > 2 . (10)

Further, note that for all n,
(

2

3

)4

>
n

3 − 3n2 + 2n − 1

(n2 − n + 1)2
. (11)

Thus taking (10) and (11) together, we have, for n > 2,

(
n

2 − n

n2 − n + 1

)n2

>
n

3 − 3n2 + 2n − 1

(n2 − n + 1)2
.

Rearranging now gives the desired result.
For the upper bound, one has to look directly at (6). Suppose we have

some pd(x) ∈ Md[x] such that ‖pd ‖
1

d

Iδn

= 1

n
on an interval Iδn

= [0, 1

n−1
− δn].

Clearly, ‖pd‖
1

d

[0, 1

n−1
]
≥ 1

n−1
since 1

n−1
≤ tM ([0, 1

n−1
]). Thus, using (6), we get

1

n − 1
≤ 1

n

(
1 + k 1

n−1
−δn,δn

)
.

Using the explicit expression for k 1

n−1
−δn,δn

obtained in the proof of Lemma 3,

we see that then δn ≥ δmin(n) = 1

4n3−8n2+5n−1
, thus obtaining

bmax(n) ≤ 1

n − 1
− δmin(n) =

4n

(2n − 1)2
.

�

Using the computational methods outlined in Section 5, we get improved
lower bounds for bmax(n) for n = 3, . . . , 8. This is done by finding a b ∈
( 1

n
,

1

n−1
) as large as possible and a polynomial Pn(x) with ‖Pn‖[0,b)=

1

n
, so that

then bmax(n) ≥ b. The polynomials Pn are given in Table 1. The polynomial
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P3 is a corrected version (see Corrigendum to [4]) of one appearing in [4],
which did not have the property claimed, while P4 appears in [4].

0.465 ≤ bmax(3) , 0.303 ≤ bmax(4) ,

0.230 ≤ bmax(5) , 0.184 ≤ bmax(6) ,

0.148 ≤ bmax(7) , 0.130 ≤ bmax(8) .

As n gets larger, computations become increasingly difficult, as the differ-
ence 1

n−1
− 1

n
becomes small compared to 1

n
.

Using (6), one can obtain a new lower bound for tM([0, b]), b < 1:

Lemma 4. Let Ib = [0, b], b < 1 and let n = min{m ∈ N | 1

m
> b}. Then

tM(Ib) ≥ max

{
1

n + 1
,

b

2(1 +
√

1 − nb) − nb

}
.

Proof. Let δ = 1

n
− b. As can easily be seen from (6),

tM

([
0, 1

n
− δ

])
≥ tM

([
0, 1

n

]) 1

1 + k 1

n
−δ,δ

=
1 − nδ

n(1 + nδ + 2
√

nδ)

=
b

2 − nb + 2
√

1 − nb
.

Seeing that 1

n+1
is a larger lower bound for b ≤ bmax(n + 1), we get the

result. �

4. The Farey interval conjecture

Another open conjecture, this one taken from [3], is the following:

Conjecture 3 (Farey Interval Conjecture). Let p

q
,

r
s
∈ Q with q, s > 0 be

such that rq − ps = 1. Then

tM

([
p

q
,
r

s

])
= max

{
1

q
,
1

s

}
.

Computationally, the authors verified the conjecture for denominators up
to 21 and it was proved for an infinite family of such intervals in [4]. It
is perhaps worth noting that continuity of tM(x) cannot be used to find a
counterexample to this conjecture, as the following argument shows.

Let n > 1 ∈ N. We will show that we cannot find a Farey Interval of the
form [ k

n
,

p

q
] with 1 ≤ k < n, n = min{q, n} and p

q
> b

∗
max

(n), where

b
∗
max

(n) = sup
k

n
<b

{
b
∣∣tM

([
k
n
, b

])
= 1

n

}
.
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As can easily be derived from the proof of Lemma 3,

b
∗
max

(n) ≤ k(4n2 + 1)

n(2n − 1)2
.

If we wanted to use this to derive a counterexample to the Farey Interval
Conjecture, we would need p

q
> b

∗
max

(n). Using the Farey property

pn − qk = 1 , (12)

we can write this as

1 + qk

qk
>

4n2 + 1

(2n − 1)2
.

From this it follows that 1+qk < 2n+1, so that, using (12) again, 1+qk =
2n. Now, as q > n, it is clear that k = 1 for this to hold.

In the case k = 1, one can show that the Farey interval is then of the form[
1

n
,

1+t
(1+t)n−1

]
, t ∈ N. But no such interval with 1+t

(1+t)n−1
> b

∗
max

(n) = 4n2
+1

(2n−1)2n

exists.
The result for the remaining Farey intervals is obtained by using the trans-

formations x 7→ m ± x, m ∈ Z.

5. Computational Methods

In order to improve the lower bounds for bmax(n) given in Theorem 2, we
need to turn to computational methods to attempt to find a monic polynomial
P (x) ∈ Z[x] attaining the maximal obstruction on an interval [0, b) with
1

n
< b <

1

n−1
. These come in two stages:

(1) Using a modification of the LLL algorithm to find factors fi(x) of
P (x).

(2) Using Linear Programming methods first used in [2] in connection with
the integer transfinite diameter with additional equality constraints
obtained in [4] to determine the exponents αi.

We will briefly discuss the implementations of both parts of the algorithm.

(1) LLL is an algorithm that, given a basis b for a lattice Λ, produces
a ‘small’ basis for Λ with respect to a given inner product 〈·, ·〉. In
their modification of the LLL algorithm for monic polynomials in-
troduced in [3], the authors used the Lattice Zn[x] with the basis
b = (1, x, x

2
, · · ·xn) and the inner product

〈pn, qn〉 =

∫ b

a

pn(x)qn(x)dx + anbn

for pn(x) = anx
n + · · · + a0, qn(x) = bnx

n + · · · + b0 ∈ Zn[x]. The
additional factor anbn is used to discourage non-monic factors from
appearing, and the algorithm usually produces only one monic basis
element of degree n.
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In practice, we used the following recursive algorithm to identify
factors fi(x) of P (x) for an interval I = [a, b] where the maximal
obstruction polynomial q(x) = adx

d + · · ·+ a0 is known:
(a) Start with b = (1, x, x

2
, · · · , x

k) for k = 20 (in some cases, a
larger basis was required initially).

(b) Run LLL, generating a list of factors l = {fi(x)}.
(c) Sieve the list by using the condition that if fi(x) | P (x), then the

resultant has to satisfy |Res(fi, q)| = 1 (see [4]).
(d) For every fi still in l, define

b̂i = (1, fi(x), fi(x)x, fi(x)x2
, · · ·fi(x)xk)

and re-run the LLL Algorithm with this basis, adding new factors
to l.

(e) Repeat steps (a)–(d) until no more new factors are found, at
which point we return l.

(2) To determine the exponents αi of fi(x), 1 ≤ i ≤ N , we use a technique
first used by Borwein and Erdélyi in [2]. Given a list of factors l =
{fi(x)}, one attempts to minimise m subject to

(i)
∑N

i=1

αi

deg fi

log |fi(x)| ≤ m − g(x) , forx ∈ X ,

(ii)
∑N

i=1
αi = 1 ,

(iii)
∑N

i=1

αi

deg fi

f ′
(βs)

f(βs)
= 0 , for 1 ≤ s ≤ deg q , where q(βs) = 0 ,

(iv) αi ≥ 0 for 1 ≤ i ≤ N ,

(13)

over a finite set X ⊂ I. Here, g(x) is a function such that

g(x) =

{
0 , q(x) = 0 ,

ε(x) > 0 , q(x) 6= 0 .

The use of this function is theoretically not necessary, but is useful
when doing computations, as it avoids having to deal with exact values
at points where the polynomial does not need to attain the maximal
obstruction.

The first two constraints in (13) are taken from [2] with a slight
modification to the first, while the third is unique to the monic case
and taken from [4]. This is also where we get the final set of con-
straints:

Let βs be a root of q(x) and define f̂
(s)
i = 1

deg fi

log |fi(βs)|. If b1 =

−1

d
log |ad|, b2, . . . , bl is an independent generating set for the Z-lattice
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generated by − 1

d
log |ad| and the f̂

(s)
i , let c

(s)
j,i be such that

l∑

j=1

c
(s)
j,i bj = f̂

(s)
i .

Then we get the additional conditions, derived in [4]:

N∑

i=1

c
(s)
j,i αi =

{
− 1

deg q
, j = 1 ,

0 , j > 1 ,
for 1 ≤ s ≤ deg q (14)

Again, we use a recursive algorithm for determining the exponents.
Given a set of points Xk, we use (13) and (14) to determine the opti-

mal exponents {α(k)

1
, α

(k)

2
, . . . , α

(k)

N } attaining the minimum value mk.
Then, we construct the normalised ‘polynomial’

P
(k)(x) =

N∏

i=1

fi(x)
α
(k)

i

deg fi ,

and add its extrema to Xk to obtain Xk+1. Starting with a small set
of values X1 ⊂ I, we repeat this procedure until we get K ∈ N such
that |mK − mK−1| < ε for required precision ε > 0.

Finally, we compute the supremum norm of PK(x) ≈ e
mK on the

interval and verify that ‖ PK ‖I= |ad|−
1

d . One can attempt to find
rational approximations of smaller denominator to the exponents, al-
ways checking that the obstruction is still attained. The attaining
polynomial P (x) is then found by clearing denominators in the expo-
nents of PK(x).
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Table 1. Polynomials used for lower bounds on bmax(n)

P3(x) = x45944640(x14 − 11406261x13 + 47054086x12 − 88456310x11

+100247244x10 − 76341256x9 + 41208853x8 − 16202606x7 + 4692047x6 − 999261x5

+154318x4 − 16766x3 + 1211x2 − 52x + 1)2450525

(x8 + 14184x7 − 34944x6 + 36442x5 − 20832x4 + 7041x3 − 1405x2 + 153x − 7)877415

(x8 + 4842x7 − 10935x6 + 10355x5 − 5317x4 + 1594x3 − 278x2 + 26x − 1)2571030

(x8 + 7812x7 − 18072x6 + 17561x5 − 9271x4 + 2864x3 − 516x2 + 50x − 2)595980

(x7 − 1233x6 + 2406x5 − 1913x4 + 791x3 − 179x2 + 21x − 1)1210840

(x5 − 3x4 + 7x3 − 11x2 + 6x − 1)1052898

P4(x) = x640(x5 + 432x4 − 456x3 + 179x2 − 31x + 2)47

(x7 + 8760x6 − 13342x5 + 8488x4 − 2784x3 + 514x2 − 50x + 2)35

P5(x) = x1050990(x10 + 5544095x9 − 9115714x8 + 6623719x7 − 2790988x6

+751349x5 − 133974x4 + 15818x3 − 1192x2 + 52x − 1)78796

(x6 + 4950x5 − 4605x4 + 1698x3 − 310x2 + 28x − 1)21825

P6(x) = x5232473(x5 + 1260x4 − 852x3 + 215x2 − 24x + 1)118824

(x7 − 140190x6 + 132517x5 − 51966x4 + 10819x3 − 1261x2 + 78x − 2)200917

P7(x) = x44(x5 + 3472x4 − 1826x3 + 358x2 − 31x + 1)

P8(x) = x12288(x2 − 8x + 1)246(x4 − 576x3 + 208x2 − 25x + 1)741
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NONLINEAR RECURRENCE SEQUENCES AND LAURENT
POLYNOMIALS

ANDREW HONE

Abstract. Rational recurrence relations whose iterates are Laurent poly-
nomials in the initial data with integer coefficients are said to have the
Laurent property. Examples of such recurrences have appeared in a wide
variety of contexts, including integer sequences in number theory (ellip-
tic divisibility and Somos sequences), integrable systems (discrete soliton
equations), and algebraic combinatorics (in particular, Fomin and Zelevin-
sky’s theory of cluster algebras). For suitable initial data, recurrences
that have this Laurent property generate integer sequences, and if they
also have a rational invariant then their iteration produces infinitely many
solutions of an associated Diophantine equation. After presenting a clas-
sification of certain second-order nonlinear recurrences with the Laurent
property, we discuss which of them are explicitly solvable (or integrable,
in a suitable sense). Subsequently the solution of the initial value problem
is obtained for a family of third-order nonlinear recurrences that share the
Laurent property. For suitable choices of initial data, the iteration of these
recurrences furnishes infinitely many integer points on a pencil of cubic
surfaces.

1. Introduction

Integer sequences that are generated by linear recurrence relations have
a long history. As well as being the subject of intensive study in number
theory, they find modern applications in computer science and cryptography
[16]. However, the theory of nonlinear recurrence sequences has only begun
to be developed relatively recently. The iteration of a kth-order nonlinear
recurrence relation of the form

xn+k = F (xn, xn+1, . . . , xn+k−1) ≡ F (xn) , (1.1)

where xn = (xn, xn+1, . . . , xn+k−1), is equivalent to iterating the map

ϕ :




x0

x1
...

xk−1


 �→




x1

x2
...

F (x0)


 , (1.2)

2000 Mathematics Subject Classification. 11B37, 11B83, 11D25, 33E05, 37J35.
Key words and phrases. Laurent polynomials, nonlinear recurrence sequences, integrable

maps.
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which is just a particular sort of discrete dynamical system (in Rk or Ck,
say). If we want (1.1) to generate sequences of integers, then we can certainly
choose F ∈ Z[x], and take initial data in Zk, but in general the corresponding
map (1.2) will not have a unique inverse. Furthermore, in that case such
sequences will generically exhibit doubly exponential growth, i.e., log |xn|
will grow exponentially with n.

A simple example in the above class is the quadratic map defined by the
recurrence

xn+1 = x2
n + c (1.3)

with a parameter c, which is a prototypical model of chaos [12]. In order
to get an integer sequence, it suffices to take x0, c ∈ Z. However, note that
only the special cases c = 0,−2 are exactly solvable [11], and these are also
the only values of c for which (1.3) admits another map that commutes with
it (see [58] and references). The theory of linear recurrence sequences relies
heavily on the fact that they are explicitly solvable. Thus it is natural to look
for nonlinear recurrences that are also solvable or ‘integrable’ in some sense.

In this article we shall be concerned with the case that the map (1.2) is
birational and equivalent to a recurrence of the particular form

xn+k xn = f(xn+1, . . . , xn+k−1) , (1.4)

where f is a polynomial in its arguments. It turns out that among rational
recurrences of this kind there is a large class that generate integer sequences
from suitable initial data. One of the first known examples of this type was
found by Michael Somos from an investigation of the combinatorics of ellip-
tic theta functions, and the sequences that he found are known as Somos
sequences. Subsequently, it was realized that the recurrence relations for
Somos sequences have a very special property: the iterates are polynomi-
als in the initial data and their inverses (Laurent polynomials) with integer
coefficients. Recurrence relations with this property are said to exhibit the
Laurent phenomenon, and examples of this phenomenon have surfaced in a
wide variety of different contexts, ranging from cluster algebras in algebraic
combinatorics [17] to integrable partial difference equations in soliton theory
[62].

The aim of this article is to describe a fascinating area of overlap between
number theory, algebraic combinatorics and integrable systems, with the com-
mon theme being recurrences and the sequences of integers or polynomials
that they generate. The discussion is led by examples, and technical details
are kept to a minimum. The next section provides a brief review of Somos
sequences and the Laurent property, in order to put them into a wider con-
text and hopefully whet the reader’s appetite. In Section 3 we outline some
notions of what it means for a map to be integrable, including an arithmeti-
cal criterion for integrability due to Halburd [21], which gives a simple way
to detect whether a recurrence should be explicitly solvable or not. We also
explain an interesting property of recurrences with the Laurent property: if
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they have rational invariants (conserved quantities), then they can generate
infinitely many solutions of associated Diophantine equations. Section 4 il-
lustrates these ideas by considering second-order recurrences of the form (1.4)
for k = 2; a classification of those with the Laurent property is presented.

If a conic has an integer point, then there are well known sufficient con-
ditions for it to have infinitely many integer points [38]. In the fifth section
we present an analogous result for a family of cubic surfaces, which arises
from considering a two-parameter family of third-order nonlinear recurrences.
These third-order recurrences both have the Laurent property, and have two
rational conserved quantities that define a pencil of cubic surfaces. The ex-
plicit solution of the initial value problem for these recurrences is derived,
and it is shown that, for suitable parameter values and initial data, the it-
erates of the nonlinear recurrence produce infinitely many integer points on
the associated cubic surfaces. The final section contains some conclusions.

2. Somos sequences and the Laurent phenomenon

Somos made the numerical observation that, with the four initial data
x0 = x1 = x2 = x3 = 1, the fourth-order recurrence

xn+4 xn = xn+3 xn+1 + x2
n+2 (2.1)

produces a sequence of integers [52], that is

1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, . . . . (2.2)

He noticed the same sort of thing for the Somos-k recurrences

xn+k xn =

[k/2]∑
j=1

xn+k−j xn+j (2.3)

with k = 5, 6, 7: if all initial values are 1 then the iterates are all integers;
but when k = 8 denominators appear.

To begin with, various elementary ways were found to prove that the se-
quence (2.2) consists of integers, but eventually it was realized that there are
deeper reasons behind this fact. If one takes the initial values x0, x1, x2, x3 as
variables, then the next two iterates are

x4 =
x3x1

x0
+

x2
2

x0
, x5 =

x3x2

x0
+

x3
2

x1x0
+

x2
3

x1
,

which are polynomials in these variables and in the inverse powers x−1
0 , x−1

1 .
One can regard such expressions as Laurent series that have been truncated,
and hence they are referred to as Laurent polynomials. It is clear that the
iterates x6 and x7 are also Laurent polynomials, and they have integer coeffi-
cients, so they lie in the ring Z

[
x±1

0 , x±1
1 , x±1

2 , x±1
3

]
. However, what is surpris-

ing is that obtaining x8 from (2.1) requires division by x4, but a remarkable
cancellation occurs, so that x8 is also a Laurent polynomial in the variables
x0, x1, x2, x3, and so are all the subsequent iterates. A recurrence whose
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iterates are Laurent polynomials in the initial data with integer coefficients is
said to have the Laurent property. By inserting coefficients on the right hand
side of (2.1), one obtains the general Somos-4 recurrence, that is

xn+4 xn = α xn+3 xn+1 + β x2
n+2 , (2.4)

and this also has the Laurent property; more precisely,

xn ∈ Z
[
x±1

0 , x±1
1 , x±1

2 , x±1
3 , α, β

]
holds for all n. It is an obvious consequence of a recurrence having the Laurent
property that if all the initial data have the value 1, and if the coefficients
take integer values, then all the iterates must be integers. Subsequently, a
variety of other recurrences of the form (1.4) with the Laurent property were
discovered [20, 47].

Somewhat earlier, when Mills, Robbins and Rumsey made their study of
Charles Dodgson’s condensation method for computing determinants [36],
which led to the alternating sign matrix conjecture [5], they considered the
case α = 1 of the recurrence

D�,m,n+1D�,m,n−1 = α D�+1,m,nD�−1,m,n + β D�,m+1,nD�,m−1,n , (2.5)

where the indices �,m, n range over a suitable subset of Z3, and observed
that it generates Laurent polynomials in the initial data. Thus the equation
(2.5) became known within the algebraic combinatorics community, where it
is usually referred to as the octahedron recurrence [43]; while in the theory
of integrable systems it is known as a particular form of the discrete Hirota
equation [62], a partial difference equation with soliton solutions. In soli-
ton theory, equations that are quadratic in the dependent variables, such as
(2.3) and (2.5), are referred to as being in Hirota bilinear form, and they
can by rewritten very elegantly using certain bilinear operators that Hirota
introduced [24].

The Laurent property has reappeared most recently in Fomin and Zelevin-
sky’s theory of cluster algebras (see [19] and references). A cluster alge-
bra is a commutative algebra with a distinguished set of generators that
live in clusters of k elements attached to the vertices of a k-regular tree.
At any two adjacent vertices the clusters C = {xn, xn+1, . . . , xn+k−1} and
C ′ = {xn+1, xn+2, . . . , xn+k} have all but one element in common, and the
exchange relation between such an adjacent pair of clusters has the form

xn+k xn = c1 M1(xn+1, . . . , xn+k−1) + c2 M2(xn+1, . . . , xn+k−1) (2.6)

for suitable monomials Mj and coefficients cj ; this is just a special case of
(1.4). In [17], the general machinery of cluster algebras was shown to be
extremely effective in proving the Laurent property for a wide variety of re-
currences, mostly (but not all) of the form (2.6). In particular, Fomin and
Zelevinsky there gave the first proof of the Laurent property for the octahe-
dron (discrete Hirota) recurrence (2.5). Subsequently, Speyer has developed



192 Nonlinear recurrence sequences and Laurent polynomials

a combinatorial model to prove more detailed properties of the Laurent poly-
nomials generated by this recurrence. In particular, he has shown that all
the coefficients of these Laurent polynomials are 1, and the analogous prop-
erty for the Laurent polynomials generated by Somos-4 (that all coefficients
are positive) is a corollary of this [53]. Propp directed a group of extremely
talented students in the REACH project (Research Experiences in Algebraic
Combinatorics at Harvard), who developed a different combinatorial model
to show that the integers (2.2) count the number of perfect matchings of a
sequence of graphs.

Actually, there is another way to demonstrate that the sequence (2.2) con-
sists of integers, which is to take the sequence of rational numbers

0, −1, 1/4, −5/9, −20/49, 116/529,
−3741/3481, 8385/98596, −239785/2337841, . . .

(2.7)

that are the X coordinates of the odd multiples of the point (0, 1) on the
elliptic curve

Y 2 = 4X3 − 4X + 1 .

The denominators in (2.7) are always perfect squares, and they are precisely
the squares of the integers (2.2). It was understood in unpublished work of
several number theorists that the iterates of Somos-4 or Somos-5 recurrences
are associated with a sequence of points P0 + nP on an elliptic curve1 E—
for example, compare the discussion of Zagier [63] with the results of Elkies
quoted in [7]. The algebraic part of the construction was detailed in the thesis
of Swart [55] (who also mentions unpublished results of Nelson Stephens),
while the author has given the explicit analytic solution of the initial value
problem for the general Somos-4 [26] and Somos-5 [29] recurrences in terms of
the Weierstrass sigma function, and van der Poorten has recently presented
another construction based on the continued fraction expansion of the square
root of a quartic [40]. For various results on Somos sequences of higher order,
see [4, 8, 35, 41, 42].

A particular class of Somos sequences was already studied in detail in the
1940s, namely the elliptic divisibility sequences (EDS) considered by Mor-
gan Ward [60, 61]. These sequences are generated by a special case of the
recurrence (2.4), namely

xn+4 xn = x2
2 xn+3 xn+1 − x1 x3 x2

n+2 , (2.8)

with initial data

x1 = 1, x2, x3, x4 ∈ Z with x2 | x4 .

The iterates xn of an EDS are integers with the divisibility property that
xm | xn whenever m | n, and they correspond to the multiples nP of a
point P on an elliptic curve E, so they are given by values of the division
polynomials of E (for a description of these see, e.g., Exercise 3.7 in [50]).

1Historical notes can be found at http://www.math.wisc.edu/~propp/somos.html
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The arithmetical properties of EDS and Somos sequences—in particular the
distribution of primes therein—are a subject of current interest [10, 15, 49, 51].
Some of these properties are reviewed in the book [16] (see section 1.1.20, for
instance), where it is suggested that such bilinear recurrence sequences are
natural generalizations of linear ones, with many analogous features. For
example, the Fibonacci sequence is a divisibility sequence generated by the
linear recurrence Fn+1 = Fn + Fn−1 with initial values F0 = 0, F1 = 1, and
the even index terms xn = F2n satisfy the bilinear recurrence

F2n+4 F2n−4 = 9F2n+2 F2n−2 − 8F 2
2n ,

so this is a degenerate EDS corresponding to the case where the curve E
becomes singular.

3. Conserved quantities and integrable maps

In order to completely integrate a differential equation of order k (or an
equivalent system of k coupled first-order equations), one usually requires suf-
ficiently many conserved quantities. Certainly if there are k − 1 independent
such quantities, then this will be enough to reduce the problem to a single
quadrature, but sometimes one does not need as many as this. In particular,
in the traditional setting of classical Hamiltonian mechanics one has an even
number k = 2N of first-order equations (Hamilton’s equations), and it turns
out that only k/2 = N suitable conserved quantities are required.

More precisely, in the setting of classical mechanics one has a real sym-
plectic manifold M equipped with a closed, nondegenerate two-form ω (the
symplectic form). For a real-valued function h on M, its associated Hamil-
tonian vector field Xh is defined by setting the contraction of ω by Xh to be
iXh

ω = −dh. In mechanics, one is usually interested in a particular choice of
function h, called the Hamiltonian, which physically corresponds to the total
energy, and Hamilton’s equations for this h are the k equations

ẋ = Xh(x) , (3.1)

where x = x(t) denotes a point in M and the overdot means the time de-
rivative d/dt. The system is said to be completely integrable (in the sense of
Liouville-Arnold) if there are k/2 = N functionally independent quantities
h1 = h, h2, . . . , hN that are in involution, meaning that

ω(Xhj
, Xhk

) = 0

for all j, k. The latter condition implies that all the corresponding pairs of
Hamiltonian vector fields Xhj

, Xhk
commute with one another, and also that

each hj is a conserved quantity (first integral) for the system, i.e., ḣj = 0 for
j = 1, . . . , N . In that case, a theorem of Liouville says that the system (3.1)
can be integrated by quadratures.

For a completely integrable system, it is clear that each trajectory x(t) ∈ M
generated by the flow (3.1) lies on an N -dimensional level set defined by
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h1 = constant, . . . , hN = constant, where the value of these constants is fixed
by the initial data x(0). Arnold’s reformulation of Liouville’s theorem includes
the statement that each compact, connected level set of the first integrals is
diffeomorpic to an N -dimensional torus, and describes the local coordinates
(action-angle variables) in the neighbourhood of such a torus [1]. It is also
possible to formulate Hamiltonian mechanics and complete integrability in
the more general setting of Poisson manifolds, equipped with a (possibly
degenerate) Poisson bracket [9]; in particular this allows k, the dimension
of M, to be odd. However, the symplectic setting will be sufficient for our
purposes here.

After this brief excursion into Hamiltonian systems, we must return to the
main topic of interest, namely recurrences. While the complete integrability
of differential equations has a long history, the corresponding notions for
discrete systems (difference equations, maps and recurrences) have only been
introduced quite recently. Indeed, discrete integrable systems are the subject
of much ongoing research (see [3, 54] for a range of recent results) and it is
fair to say that there is no single definition of a ‘discrete integrable system’
that applies universally. However, here we shall discuss various definitions
which are appropriate in the context of recurrences, as well as some of the
relationships between them.

As already mentioned in the introduction, iterating a kth-order recurrence
relation is equivalent to iterating a map in k dimensions, ϕ say. If k = 2N
is even and ϕ preserves a symplectic form ω (so that the pullback ϕ∗ω = ω),
then we say that this is a symplectic map. In this setting, there is a direct
analogue of the Liouville theorem [58], and thus it makes sense to define
symplectic maps [6] or correspondences [59] to be completely integrable (in the
Liouville-Arnold sense) when they have N independent conserved quantities
(invariants) that are in involution.

Somos-4 recurrences furnish a very simple example of an integrable sym-
plectic map, via the introduction of some new variables. Upon setting

un =
xn−1xn+1

x2
n

, (3.2)

in terms of the xn satisfying (2.4), we get the second-order recurrence

un+1u
2
nun−1 = αun + β , (3.3)

which is equivalent to a birational map of the plane (k = 2N = 2), that is

ϕ :

(
u
v

)
�→

(
v

(αv + β)/(uv2)

)
(3.4)

which (away from the singularities) is defined on R2 (or C2) and preserves
the symplectic form

ω = (uv)−1 du ∧ dv . (3.5)



Andrew Hone 195

The second-order recurrence (3.3) has the conserved quantity

J = un un−1 + α

(
1

un

+
1

un−1

)
+

β

un un−1
(3.6)

(invariant with n), which is equivalent to a conserved quantity for the map
(3.4), and so (because we only require one invariant for Liouville’s theorem
to apply when N = 1) it is a completely integrable map.

¿From the expression (3.6) we see that each level set J = constant is a
quartic curve of genus one given by

u2v2 − Juv + α(u + v) + β = 0 ,

and uniformizing this curve leads to the formula un = ℘(z) − ℘(z0 + nz) for
the iterates of (3.4) in terms of the Weierstrass ℘ function of a birationally
equivalent cubic curve Y 2 = 4X3 − g2X − g3, for suitable g2, g3, z0, z (see
[26, 29] for details). Figure 1 shows a plot of several different orbits for
the map (3.4), obtained by taking various different starting points (u0, u1)
and plotting successive pairs of iterates (un−1, un) in the (u, v) plane. Each
starting point gives a different value of J and hence a different level set defined
by (3.6).

0.8

1

1.2
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1.6

1.8
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0.8 1 1.2 1.4 1.6 1.8 2 2.2

Figure 1. A family of orbits for (3.4), the map of the plane
associated with Somos-4.

Recently, Halburd has proposed an alternative, arithmetical, definition of
integrability in the context of rational recurrences (or rational maps). For
non-zero x ∈ Q written in lowest terms as x = p/q for p, q ∈ Z, its height
is H(x) = max{|p|, |q|}, while its logarithmic height is h(x) = log H(x). Ac-
cording to [21] a rational recurrence defined over Q is said to be Diophantine
integrable if the logarithmic height h(xn) of the iterates grows no faster than
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a polynomial in n. According to this definition, the only integrable first-order
recurrences with constant coefficients are the Möbius transformations

xn+1 =
axn + b

cxn + d
, ad − bc �= 0 . (3.7)

These are the birational automorphisms of the projective plane (xn ∈ P1).
The recurrence (3.7) can be exactly solved upon linearization via xn = pn/qn

to give the system (
pn+1
qn+1

)
=

(
a b
c d

) (
pn

qn

)
(which is equivalent to a second-order scalar linear equation by elimination
of either pn or qn), and for a, b, c, d ∈ Q the logarithmic heights h(xn) of all
aperiodic rational orbits grow linearly in n. This should be contrasted with
the case c = 0 of the quadratic recurrence (1.3): xn+1 = x2

n is explicitly
solvable, with the solution being xn = x2n

0 , and it is also linearized by setting
wn = log xn, but it is not Diophantine integrable because h(xn) = 2nh(x0) for
x0 ∈ Q. Here we consider only autonomous recurrences (where the coefficients
are constant), but the definition of Diophantine integrability applies equally
well to non-autonomous recurrences whose coefficients depend on n, such as
the discrete Painlevé equations [45].

A huge advantage of taking Halburd’s criterion, in terms of the growth of
heights, as a definition of integrability is that, given any rational recurrence
defined over Q, it is very easy to perform a numerical test to check the as-
ymptotic growth of heights for a particular orbit. However, it is not clear a
priori what relation (if any) it has with complete integrability in the Liouville-
Arnold sense. In fact, for autonomous recurrences it seems that there is a
direct relation between Diophantine integrability and so called algebraically
completely integrable systems. In the setting of continuous Hamiltonian sys-
tems there is a precise notion of an algebraically completely integrable system
[57], for which each flow linearizes on the (generalized) Jacobian of an alge-
braic curve, or more generally on an Abelian variety [31] that corresponds
to the (complexified) level set of the first integrals. Quite recently, some
discrete analogues of algebraically completely integrable systems have been
found; for instance, the discrete counterparts of linear flows on the Jacobians
of hyperelliptic curves are described in [32].

Let us consider the simplest example of second-order recurrences, that are
equivalent to birational maps of the plane. If such a map is completely inte-
grable à la Liouville-Arnold, then it must preserve a symplectic form ω and
have a conserved quantity. If the further requirement of algebraic complete
integrability is imposed, then the conserved quantity must be a rational func-
tion, so that the level sets are algebraic varieties (in this case, plane curves).
Now the map induces an automorphism on the plane curve corresponding to
each level set, and if it is non-trivial, i.e., infinite order, then by the Hurwitz
theorem the genus of the curve must be at most one. In the case where the
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map is defined over Q, the logarithmic heights of rational points grow linearly
in n on a rational curve and quadratically in n on an elliptic one [50], and
hence the map is Diophantine integrable. Thus for birational maps of the
plane we see that Diophantine integrability is necessary for algebraic integra-
bility, but whether the converse should hold is not so immediately clear. For
non-trivial third-order recurrences, similar arguments show that if there are
two independent rational conserved quantities then the corresponding map
is Diophantine integrable. However, in three dimensions there is the further
subtlety that the generic level set need not be irreducible: we shall see an
example of this in Section 5. In higher dimensions there are many more
possibilities.

We should also mention that there are several other integrability criteria
for nonlinear recurrences. For example, Hietarinta and Viallet have consid-
ered the degrees dn of the iterates as rational functions of initial data, and
proposed that the algebraic entropy limn→∞(log dn)/n should vanish for inte-
grable maps [23]. Also, Roberts and Vivaldi have studied the distribution of
orbit lengths in rational maps of the plane reduced to finite fields Fp for differ-
ent primes p, and thence used the Hasse-Weil bound to identify algebraically
integrable cases of such maps [46].

3.1. Conserved quantities and Diophantine equations. There is one
additional feature that was not mentioned in our earlier discussion of the
Somos-4 recurrence, namely the fact that it generates solutions of a quartic
Diophantine equation in four variables. If we rewrite the formula (3.6) for
the conserved quantity J in terms of the original variables xn, we obtain the
equation

α (xn−1x
3
n+1 + x3

nxn+2) + β x2
nx

2
n+1 + x2

n−1x
2
n+2 = J xn−1xnxn+1xn+2 .

(3.8)
For fixed J , this defines a quartic threefold which can be viewed as a fibre
bundle over the elliptic curve defined by (3.6), with the transformations

xn �→ Axn , xn �→ Bn xn

(for arbitrary non-zero A,B) generating gauge symmetries along the fibres.
Alternatively, (3.8) can be considered as a quartic Diophantine equation.
Given coefficients α, β ∈ Z (or in Q), if the Somos-4 recurrence (2.4) with
a set of integer initial data (x0, x1, x2, x3) generates a non-periodic sequence
of iterates satisfying xn ∈ Z for all n, then there are infinitely many integer
quadruples (xn−1, xn, xn+1, xn+2) that satisfy (3.8), with J ∈ Q being uniquely
determined as long as all the initial data are non-zero. This is a particular
instance of a general feature shared by all recurrences that both have the
Laurent property and possess a rational invariant: generically, the orbit of
suitable initial data will generate infinitely many solutions of an associated
Diophantine equation.
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Lemma 3.1. Suppose that a kth-order rational recurrence of the form (1.1)
has coefficients in Q[c] (for some set of parameters c) and has the Laurent
property, i.e., xn ∈ Z

[
x±1

0 , x±1
1 , . . . , x±1

k−1, c
]

for all n. Suppose further that
this recurrence also has a rational invariant given by

K =
f1(xn, xn+1, . . . , xn+k−1, c)

f2(xn, xn+1, . . . , xn+k−1, c)

for f1, f2 ∈ Z[xn, xn+1, . . . , xn+k−1, c]. If f2 �= 0 for some fixed integer values
of c and initial data xj = 1 or −1 for j = 0, . . . , k − 1, then the value of
K ∈ Q is fixed, and the recurrence generates infinitely many integer solutions
of the Diophantine equation

f1(xn, xn+1, . . . , xn+k−1, c) = K f2(xn, xn+1, . . . , xn+k−1, c)

as long as the corresponding orbit is aperiodic.

The integer sequence (2.2) provides a particular example of the above re-
sult: setting α = β = 1, the initial data 1, 1, 1, 1 produce the value J = 4
in (3.8), and for n ≥ 0 any four adjacent terms of this increasing sequence
provide a distinct solution of the equation. In [56] it is proved that the it-
erates of the general Somos-4 recurrence satisfy the stronger property that
xn ∈ Z

[
x±1

0 , x1, x2, x3, α, β, (α2 + βJ)
]

for n ≥ 0, which yields a broader set
of sufficient criteria for integer sequences. In the following sections we will
see analogous results for some other recurrences.

4. Second-order recurrences

In this section we consider second-order recurrences of the form (1.4), and
present a classification result for these. Note that, in what follows, we exclude
those recurrences of the form

xn+1 xn−1 = cxd
n ,

which generate Laurent monomials. This trivial case is not Diophantine in-
tegrable for d ≥ 3, but it is explicitly solvable for all d, and can be linearized
via the substitution wn = log xn to give wn+1 − dwn + wn−1 = log c.

Theorem 4.1. Let f(x) ∈ Z[x], with f being of degree d in x and having the
form

f(x) = xM F (x)

for a non-constant polynomial F such that F (0) �= 0. The recurrence

xn+1 xn−1 = f(xn) (4.1)

possesses the Laurent property (that is, xn ∈ R := Z
[
x±1

0 , x±1
1 , c

]
for all

n ∈ Z, where c denotes the coefficients of f) if and only if one of the following
three cases holds:
(i) M = 0 and f satisfies

f(x) = ±λ−d/2 xd f(λ/x) , with λ = f(0) ; (4.2)
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(ii) M = 1 and the polynomial F (of degree D = d − 1) satisfies

F (x) = ±λ̂−D xD F
(
λ̂2/x

)
, with λ̂ = F (0) ; (4.3)

(iii) M ≥ 2 and F is an arbitrary non-constant polynomial.

Remark. The above result was first given (in a slightly different form) in
[28]. Case (i) (f(0) �= 0) was also found in 2001 by Speyer, and his proof of
the Laurent property is reproduced by Musiker [39]. This case is also covered
by the Caterpillar Lemma in [17].

Proof. The proofs for cases (i) and (iii) were described in [28], but most of
the details for case (ii) were omitted, so here we mostly concentrate on this
case. Doing modular arithmetic in the ring R, which is a unique factorization
domain, it is straightforward to show that the stated conditions (4.2) and (4.3)
are necessary for the Laurent property in cases (i) and (ii) respectively, while
there are no conditions in case (iii). To see why (4.2) is also sufficient in
case (i), it suffices to do induction, including as part of the hypothesis that
any adjacent pair of iterates xj−1, xj for 1 ≤ j ≤ n are coprime elements
of R. In case (iii) it is even easier: not only xn ∈ R but also xn/xn−1 and
xn+1xn−1/x

2
n ∈ R for all n.

For case (ii), first of all note that the recurrence

xn+1xn−1 = xn Fn , Fn := F (xn) (4.4)

immediately implies the third-order relation

xn+2 xn−1 = Fn+1 Fn (4.5)

for all n. Now take as the inductive hypothesis that

xj = Gj+1 Gj+2

for 0 ≤ j ≤ n, where Gj ∈ R are given recursively by

Gj+2 Gj−1 = Fj−1 (4.6)

for the same range of j, starting from G1 = 1, G2 = x0, G3 = x1x
−1
0 (which

are all units in R). Assume also that any three adjacent terms Gj , Gj+1, Gj+2

are pairwise coprime in this range. By using (4.5), the next iterate of (4.4) is

xn+1 = FnFn−1x
−1
n−2 = Fn−1Fn/Gn−1Gn = Gn+3Gn+2

with Gn+2 ∈ R (by hypothesis) and Gn+3 = Fn/Gn, in accordance with
(4.6) for j = n + 1. So to have xn+1 ∈ R, it suffices to show that Fn ≡ 0
(mod Gn) so that Gn+3 ∈ R. Now xn−1 = GnGn+1 ≡ 0 and similarly xn−2 ≡ 0
(mod Gn), and by (4.5) we have Fn = F (Fn−1Fn−2/xn−3), so that mod Gn we
get

Fn ≡ F
(
λ̂2/xn−3

)
≡ ± λ̂DFn−3

xD
n−3

,

using (4.3). The denominator of the last expression has xD
n−3, but xn−3 =

Gn−1Gn−2 which is coprime to Gn (since Gn−1 and Gn−2 are, by assumption),
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while the numerator has Fn−3 = Gn−3Gn ≡ 0, so Fn ≡ 0 as required. Finally
note that

Gn+3Gn = Fn = F (Gn+1Gn+2) ≡ λ̂

both modGn+1 and modGn+2. Thus Gn+1, Gn+2, Gn+3 are pairwise co-
prime, which completes the inductive step. �

It is worth remarking at this point that the conditions stated in the above
theorem essentially require that f and F should be reciprocal polynomials
in cases (i) and (ii) respectively. In general, if we work over C, then we can

always rescale xn so that λ = 1 and λ̂ = 1 in the respective cases, but since
we require f ∈ Z[x] we do not have this freedom. In fact, if µ denotes the
leading coefficient of f , then in case (i) we have from (4.2) that µ = ±λ1−d/2,
so for odd d ≥ 3 we must have λ = 1, while for even d ≥ 4 there are the two
possibilities λ = 1 or −1; the degrees d = 1, 2 are special. Similarly in case

(ii), from (4.3) we obtain µ = ±λ̂1−D , so we require that λ̂ = 1 for D ≥ 2 (or
equivalently, d ≥ 3); and d = 2 is special once more. For case (iii) we always
have d ≥ 3.

Each recurrence of the form (4.1) is equivalent to the iteration of a map of
the plane given by

φ :

(
x
y

)
�→

(
y

f(y)/x

)
, (4.7)

which preserves the symplectic form

ω = (xy)−1 dx ∧ dy . (4.8)

As we shall see, the special cases d = 1, 2 are the only ones that are alge-
braically integrable, in the sense that they admit a rational invariant that
defines an algebraic curve.

In the case d = 1, if we require the Laurent property then we must have
µ = λ1/2, so λ is a perfect square and we have the map defined by

xn+1 xn−1 = µxn + µ2 (4.9)

whose iterates begin

x0 , x1 ,
µ(x1 + µ)

x0
,

µ2(x0 + x1 + µ)

x0x1
,

µ(x0 + µ)

x1
,

and thereafter it repeats wih period five. This is a special case of the recur-
rence

xn+1 xn−1 = µxn + λ ,

called the Lyness recurrence [2], which is integrable because it has a conserved
quantity defining an elliptic curve, i.e.,

K = xn−1 + xn +
µ(x2

n−1 + x2
n) + (λ + µ2)(xn−1 + xn) + µλ

xn−1xn

, (4.10)
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and the iterates correspond to a sequence of points P0 + nP on the curve.
Thus the special case (4.9), whose orbits are all periodic, is known as the
Lyness 5-cycle, and corresponds to the case when P is a torsion point of
order 5: by varying the initial data x0, x1 one gets a family of elliptic curves
with such a point. Actually, this example was apparently known to Gauss,
as one aspect of his pentagramma mirificum, and it has reappeared in several
other contexts: it is equivalent to the functional relation (Y-system) that
appears in the thermodynamic Bethe ansatz for an A2 scattering theory [64],
and (for µ = 1) it is the recurrence for the rank 2 cluster algebra associated
with this root system [18].

For d = 2 then µ = ±1, and for case (i) with the positive sign we have

xn+1 xn−1 = x2
n + ν xn + λ , (4.11)

or alternatively for the negative sign we get xn+1 xn−1 = −x2
n + λ. The

second choice can be transformed into the first by taking xn = κn x̃n where
κ2

n = 1 and κn+1κn−1 = −1 for all n, so it is enough to consider (4.11). This
recurrence is integrable, having a conserved quantity that defines a conic,
namely

L =
xn−1

xn

+
xn

xn−1
+ ν

(
1

xn−1
+

1

xn

)
+

λ

xn−1xn

. (4.12)

Furthermore, the iterates also satisfy a linear recurrence, viz.

xn+1 + xn−1 = Lxn − ν , (4.13)

so in terms of the initial data we have L = L(x0, x1) ∈ R and also xn ∈
Z[ν, x0, x1, L] ⊂ R for all n, which is even stronger than the Laurent prop-
erty. There are two important observations to make here. Firstly, the iterates
of (4.13), and hence of (4.11), can be written in terms of Chebyshev polynomi-
als with argument L/2. (We shall use this fact explicitly in the next section.)
Secondly, if |L| ≥ 2 then the conic defined by (4.12) has non-negative dis-
criminant, and then iterating the recurrence with integer initial data (x0, x1)
generates infinitely many integer points (xn−1, xn) on this conic.

The latter example of conics with infinitely many integer points is a par-
ticular case of a result due to Gauss (see chapter 8 in [38], for instance);
the iteration of the recurrence (4.11) is equivalent to the usual procedure for
generating solutions of Pell’s equation. When ν = 0, λ = 1 the recurrence
(4.11) generates the coefficient-free cluster algebra of rank 2 associated with

the affine root system A
(1)
1 [48]. During Graham Everest’s talk in Bristol, he

discussed the primitive prime divisors in the integer sequence xn = n2 + 1,
which is generated by (4.11) with ν = −2, λ = 5 and x0 = 1, x1 = 2. See
Everest and Harman [13], in this Proceedings.

If d = 2 and f(0) = 0, so that we are in case (ii), then either µ = 1, and

we have f(x) = x(x + λ̂), which is just a special case of (4.11), or µ = −1
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and the recurrence is given by

xn+1 xn−1 = −xn(xn + λ̂) , (4.14)

which is also integrable, having the conserved quantity

J̃ =
x4

n−1 + x4
n + λ̂(xn−1 − xn)2(2xn−1 + 2xn + λ̂)

x2
n−1x

2
n

;

J̃ = constant defines a quartic curve of genus zero. Moreover, for (4.14) the
iterates also satisfy the sixth-order linear recurrence

xn+6 + (J̃ − 1)(xn+4 − xn+2) − xn = 0 ,

which provides an alternative proof that xn ∈ R based on the the fact that
J̃ = J̃(x0, x1) ∈ R and xj ∈ R for j = 0, 1, . . . , 5.

We can now assert that, for d ≥ 3, all of the other recurrences that satisfy
the conditions of Theorem 4.1 are not algebraically integrable: they do not
have an algebraic invariant. Using standard inequalities for heights, one can
show (as in [21]) that for a recurrence of the form (4.1) with f a rational
function of degree d ≥ 3, the logarithmic heights h(xn) grow exponentially;
for generic (aperiodic) orbits the leading order asymptotics are

log h(xn) ∼ Ĉ n , Ĉ = log

(
d +

√
d2 − 4

2

)
.

So in particular we see that for integer coefficients c the recurrences (4.1)
with the Laurent property generate integer sequences (e.g. starting from
x0 = 1 = x1), but for d ≥ 3 these recurrences are not Diophantine integrable,
and hence (by the arguments of section 3) cannot be algebraically integrable.

For example, consider the recurrence

xn+1 xn−1 = x3
n + 1 .

The above theorem implies that this produces an integer sequence from the
initial data x0 = 1 = x1, that is

1 , 1 , 2 , 9 , 365 , 5403014 , 432130991537958813 , . . . ,

whose asymptotic growth is given by

h(xn) = log xn ∼ C En , E =
3 +

√
5

2
,

for some C > 0. During the meeting in Bristol, Bryan Birch’s immediate
reaction was that such doubly exponentially growing sequences are ‘horrid’,
which would seem to suggest that aesthetic sensibilities in number theory
are very similar to those in integrable systems. Nevertheless, there are many
natural questions that one might consider, e.g., regarding the appearance of
primitive prime divisors, or about the p-adic properties of such sequences.
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5. Third-order recurrences and cubic surfaces

In this section we shall consider a family of third-order recurrences with the
Laurent property. However, in contrast to the preceding results on second-
order recurrences, we shall not attempt to classify all nonlinear recurrences
of the form

xn+3 xn = f(xn+1, xn+2)

that have the Laurent property, but rather we present some detailed results
for the two-parameter family of recurrences given by

xn+3 xn = xn+2 xn+1 + b(xn+2 + xn+1) + c . (5.1)

The particular cases b = 1, c = 0 and b = 0, c = 1 were considered recently
by Heideman and Hogan [22] and by Musiker [39] respectively. In turn, (5.1)
is a special case of a more general rational recurrence, of the form

xn+3xn =
a0 + a1(xn+2 + xn+1) + a3xn+2xn+1

a3 + b1(xn+2 + xn+1) + b3xn+2xn+1
, (5.2)

that was found by Hirota et al. [25] to have two independent rational con-
served quantities. More recently, Matsukaidara and Takahashi have also con-
sidered (5.2) and other third-order recurrences in terms of coupled pairs of
second-order recurrences [34].

The recurrence (5.1) is equivalent to the map

ϕ :


 x

y
z


 �→


 y

z
(yz + b(y + z) + c)/x


 (5.3)

in three dimensions. It turns out that for suitable values of K1 and K2, each
orbit of the map lies on the intersection of the cubic surfaces defined by

F1 ≡ (x2 + z2)y − K1 xyz + b(x2 + z2 + 2xy + 2yz + 2zx)
+ b2(x + y + z) + c(x + z) + bc = 0

(5.4)

and

F2 ≡ (y2 + z2)x+(x2 + y2)z−K2 xyz + b(xy + yz + zx+ y2)+ c y = 0 . (5.5)

The key to this is the construction of the conserved quantities, which relies on
the fact that the iterates of (5.1) also satisfy a homogeneous linear recurrence
of sixth order. The following result is proved by direct calculation.

Theorem 5.1. The third-order nonlinear recurrence (5.1) has two indepen-
dent conserved quantities K1 and K2, defined by

Kj =
Nj(xn, xn+1, xn+2)

xn xn+1 xn+2
, j = 1 , 2 , (5.6)

where

N1 = (x2
n + x2

n+2)(xn+1 + b) + 2b(xn xn+1 + xn+1 xn+2 + xn+2 xn)
+ b2(xn + xn+1 + xn+2) + c(xn + xn+2 + b) ,
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and

N2 = (x2
n+2 + x2

n+1) xn + (x2
n + x2

n+1) xn+2

+ b (xn xn+1 + xn+1 xn+2 + xn+2 xn + x2
n+1) + c xn+1 .

If the values of these two quantities are fixed in terms of three initial data,
x0, x1, x2 say, then for all n the iterates xn satisfy the fifth-order inhomoge-
neous linear recurrence

xn+5 + xn+4 − K1 (xn+3 + xn+2) + xn+1 + xn + b (K2 + 4) = 0 , (5.7)

which has the sixth-order recurrence

xn+6 − (K1 + 1)(xn+4 − xn+2) − xn = 0, (5.8)

as a consequence . All adjacent triples of iterates (x, y, z) = (xn, xn+1, xn+2)
lie on the pencil of cubic surfaces defined by

F̃ (x, y, z) ≡ F1(x, y, z) + ζF2(x, y, z) = 0 , (5.9)

with F1 as in (5.4) and F2 as in (5.5).

It is possible to interpret the previous theorem in terms of integrability:
there is a natural Poisson bracket associated with each surface in the pencil
(5.9), which induces a symplectic structure on the surface, but the technical
details of this construction will be presented elsewhere. We proceed to present
the explicit solution of the initial value problem for the third-order recurrence
(5.1). This is based on the linearization (5.8), which leads to expressions in
terms of Chebyshev polynomials.

Proposition 5.2. The even index terms of a sequence generated by the third-
order nonlinear recurrence (5.1), with initial data x0, x1, x2 regarded as vari-
ables, are given by the explicit formula

x2n = A+ Tn(K1/2) + B+ Un(K1/2) − C+/(K1 − 2) , (5.10)

where K1 is the conserved quantity defined by (5.6),

C+ = −b(x0 + 2x1 + x2 + b)

x1
, (5.11)

and Tn and Un are Chebyshev polynomials of the first and second kind respec-
tively; the coefficients A+, B+ are rational functions of K1, C+, x0, x2 given
by

A+ = 2x0 −
2x2

K1
+

2C+(K1 − 1)

K1(K1 − 2)
, B+ = −x0 +

2x2 − C+

K1
. (5.12)

Similarly, the odd index terms are given by the formula

x2n+1 = A− Tn(K1/2) + B− Un(K1/2) − C−/(K1 − 2) , (5.13)

where

C− = −b(x0x1 + 2x0x2 + x1x2 + b(x0 + x1 + x2) + c)

x0x2
, (5.14)
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and the coefficients A−, B− are rational functions of K1, C−, x1, x3, given by

A− = 2x1 −
2x3

K1
+

2C− + (K1 − 1)

K1(K1 − 2)
, B− = −x1 +

2x3 − C−
K1

, (5.15)

with x3 = (x2x1 + b(x2 + x1) + c)/x0. The quantities C± are related to the
two conserved quantities K1, K2, as defined in (5.6), by

C+ + C− = −b(K2 + 4) , C+C− = b2(K1 + 2K2 + 6) . (5.16)

The generating function G(t) :=
∑∞

n=0 xn tn for the sequence has the explicit
form

G(t) =
[(x0 + x1t)(1 − K1t

2) + (x2 + x3t)t
2](1 − t2) + (C+ + C−t)t4

(1 − K1t2 + t4)(1 − t2)
.

(5.17)

Proof. We work in the field of rational functions Q(x0, x1, x2, b, c) where
all the formulae are defined. (This avoids having to exclude the degenerate
numerical cases K1 = 0 or 2.) ¿From the sixth-order linear recurrence (5.8)
it follows that the iterates satisfy the inhomogeneous recurrence

xn+4 − K1 xn+2 + xn = C± (5.18)

where the quantity on the right hand side varies with the parity of n, being
given by (5.11)/(5.14) for even/odd n respectively. Symmetric functions of
C+ and C− must be conserved quantities: adding (5.18) to itself upshifted by
n → n + 1 and comparing with (5.7) gives the first relation (5.16), while the
second relation comes from a direct calculation.

Recall that the Chebyshev polynomials of the first and second kind are
defined by

Tn(cos θ) = cos(nθ) and Un(cos θ) =
sin(nθ)

sin θ

respectively, and hence provide two linearly independent solutions of the ho-
mogeneous linear difference equation

fn+1(s) − 2s fn(s) + fn−1(s) = 0 .

With the argument s = cos θ = K1/2, it is clear from (5.18) that the sub-
sequence of even index terms x2n satisfies this second-order linear recurrence
with the addition of the inhomogeneous term C+ on the right hand side.
Hence, up to the addition of a constant, this subsequence is given by a lin-
ear combination of the two Chebyshev polynomials evaluated at s = K1/2.
Using the initial data it is straightforward to calculate the formula (5.12) for
the coefficients. (This and other expressions must be modified slightly when
applying to the numerical cases K1 = 0 or 2.) The formula (5.13) for the odd
index terms is found similarly, together with the corresponding expressions
(5.15) for A− and B− in (5.15); they are obtained immediately by replacing
x0 → x1, x2 → x3, C+ → C− in equation (5.12). The generating function
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(5.17) can be found by multiplying (5.18) by tn and summing over even/odd
n separately. �
Remark. ¿From the recurrences (5.18) for even/odd index terms, it is easy
to see that these two subsequences each satisfy a recurrence of the form (4.11),
and the points (x, z) = (xn, xn+2) alternately lie on each of pair of conics of
the form (4.12), given by

x2 + z2 − K1xz − C±(x + z + c/b) + b2 − 2c = 0 (5.19)

for even/odd n respectively. The intersection of the surfaces K1 = constant,
K2 = constant can be understood directly by solving (5.4) for y and sub-
stituting in (5.5) to obtain a quartic equation for x, z which factorizes into
the two irreducible components given by (5.19). Of course, the solution of
the third-order recurrence can also be written down directly in terms of the
roots of the sextic polynomial associated with (5.8), but the formulation in
Proposition 5.2 gives much more detailed information about the structure of
the Laurent polynomials generated by (5.1).

Corollary 5.3. With K1 and C± defined as above, the iterates of (5.1) satisfy
x2n ∈ Z[x0, x2, K1, C+], x2n+1 ∈ Z[x1, x3, K1, C−] for all n.

The above corollary is a stronger form of the Laurent property, because the
quantities x3, K1, C± are themselves Laurent polynomials in x0, x1, x2 (and
polynomials in b, c). As a consequence, there are many ways to choose the
initial data in order to generate integer sequences from the recurrence (5.1),
and much stronger results than Lemma 3.1 can be obtained. For instance,
if the pencil of surfaces (5.9) contains a pair of integer points (x0, x1, x2)
and (x1, x2, x3), and also K1, C+, C− are all integers, then generically it
contains infinitely many integer points. For illustration, the following result
on solutions of these Diophantine equations is given without proof.

Theorem 5.4. If arbitrary integers (k, �,m) ∈ Z3 are given, then for the
two sets of parameters (i) b = k + m, c = m2 − �2 − 2k, K1 = k2 − �2 − 2,
K2 = 2k, and (ii) b = k + m − 1, c = m(m − 1) − �(� − 1) − 2k + 1,
K1 = k(k − 1) − �(� − 1) − 2, K2 = 2k − 1, the cubic pencil (5.9) contains
infinitely many triples of integer solutions, except possibly when the point
(k, �,m) lies on one of a finite set of special lines in Z3.

Remark. The preceding result arises by considering the orbit of the point
(1, 1, �−m− 1) under (5.1). Generically this orbit consists of infinitely many
distinct integer triples, except for certain values of (k, �,m) lying along lines in
Z3 where the corresponding orbit is periodic. From (5.8) it is straightforward
to show that the only possible periods are 1, 2, 3, 4, 6, 8, or 12.

6. Conclusions

The Laurent phenomenon is an unexpected feature of certain rational re-
currences, whose iterates are all Laurent polynomials in the initial data. This
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unexpected property has been observed in many different contexts, ranging
from Dodgson condensation to EDS and Somos sequences, to the theory of
cluster algebras. Zelevinsky has given the following informal definition: “a
cluster algebra is a machine for generating non-trivial Laurent polynomials”
[65]. The Laurent polynomials in cluster algebras are very interesting in their
own right. The exchange relations in cluster algebras correspond to recur-
rences of the particular form (2.6), but we have seen various examples that
are not of this specific type. In fact, the Laurent phenomenon is not restricted
to recurrences of the form (1.4) either: consider the fifth-order recurrence

xn+3x
3
nx2

n−1 = x3
n+2x

3
n−1 − x2

n+2x
3
n+1xn−2 + a(xn+1xn)6, (6.20)

for example. (It is left to the reader to show that this has the Laurent
property.) There seem to be many other examples of a similar kind.

The Laurent property for a recurrence implies that, for suitable initial data
(and integer coefficients), it generates integer sequences. However, generically
the logarithmic heights h(xn) of such integers show exponential growth with
n. Similarly, the growth rate of other measures of height, such as the total
degree of the Laurent polynomials [23], or their Mahler measure [14], gives a
measure of entropy for the recurrence, and generically the entropy is non-zero.
The condition that h(xn) has polynomial growth seems to be necessary for
the algebraic integrability of the corresponding rational map, but this may
not be straightforward to prove in general (i.e. for maps in dimension four or
more). It seems that sequences generated by integrable nonlinear recurrences
have a great deal in common with linear ones [16], and that many properties
of linear recurrence sequences should admit an extension to the setting of
integrable recurrences. Above we have discussed only very simple examples
of integrable maps or recurrences, which can be understood by elementary
means, but the theory of integrable systems has a wealth of techniques to
explain the structure of maps and recurrences of higher order [54].

Finally, we would like to comment on the unexpected link with Diophantine
equations. All of the examples of recurrences discussed here that both have
the Laurent property and have at least one invariant correspond to integrable
maps. However, it is possible to have insufficiently many conserved quantities
to satisfy the requirements of Liouville’s theorem. For example, the recurrence

xn+3xn = x2
n+2 + x2

n+1 + J (6.21)

was considered by Dana Scott in the case J = 0 [20]. It has the conserved
quantity

N = (x2
n+2 + x2

n+1 + x2
n + J )/(xn+2xn+1xn) , (6.22)

and so each orbit lies on a cubic surface N = constant. Each such surface is
defined by an equation of the form

x2 + y2 + z2 + J = Nxyz , (6.23)
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that was considered (as a Diophantine equation) by Mordell [37]; for J = 0,
N = 3 it is Markoff’s equation [33]. For J ,N ∈ Z the iteration of the
recurrence (6.21) starting from any integer solution triple will generically
generate infinitely many integer solutions of (6.23). However, the recurrence
cannot have a second rational (or algebraic) invariant: the logarithmic heights

grow like h(xn) ∼ Ĉ
(
(1+

√
5)/2

)n
for some Ĉ > 0, and the algebraic entropy

is also log
(
(1 +

√
5)/2

)
(see [27] for more details).
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CONJUGATE ALGEBRAIC NUMBERS ON CONICS: A

SURVEY

JAMES MCKEE

Abstract. A survey of results concerning algebraic numbers α such that

all the Galois conjugates of α lie on a conic: a circle, an ellipse, a parabola,

a hyperbola, or a pair of straight lines.

1. Introduction

If α is an algebraic number, with (Galois) conjugates α = α1, . . . , αd, then
we refer to S(α) := {α1, . . . , αd} as a conjugate set. Of course

S(α) = S(α2) = · · · = S(αd).

In 1857, Kronecker [8] published a result that has proved to be as useful as it
is beautiful: if α is an algebraic integer and S(α) is a subset of the unit circle
|z| = 1, then α is a root of unity. Indeed the same conclusion holds if α 6= 0
and S(α) is a subset of the closed unit disc |z| ≤ 1. The map θ : z 7→ z + 1/z
establishes a correspondence between conjugate sets of algebraic integers on
the unit circle, and conjugate sets of totally real algebraic integers lying in
the interval [−2, 2]. The same map establishes a correspondence between
conjugate sets of algebraic numbers. For algebraic numbers generally, rather
than integers, there is little more that one can say: by translation and scaling,
any interval with rational endpoints would serve in place of [−2, 2].

There are several ways in which one might imagine generalising Kronecker’s
theorem. One could consider polynomials in several variables (Montgomery
and Schinzel [9], Boyd [2], Smyth [15], Dubickas and Smyth [4]); one could
extend to algebraic nonintegers (Robinson [13], Dubickas and Smyth [4]); one
could allow one or more conjugates to leave the unit disc (Pisot numbers,
Salem numbers, and their generalisations); one could consider constraining
the conjugates to lie on different curves in the complex plane (Robinson [13],
Ennola [5], Ennola and Smyth [6, 7], Smyth [16], Berry [1]). In this article
we consider the last of these possibilities, and give a survey of all that is
known concerning algebraic numbers whose conjugates lie on a conic. This
draws together the work of several authors, over a period of nearly 150 years.
Perhaps surprisingly, the final cases (the degenerate conics that give pairs
of lines) were not completed until 2003, in the PhD thesis of Neil Berry
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[1]. Questions of integrality are often more subtle, and for results concerning
algebraic integers we shall usually just give pointers to the literature, except
for the more fundamental results of Kronecker [8] and Robinson [12].

Starting with Kronecker’s theorem, the paper will move in chronological or-
der through circles, parabolas, ellipses, hyperbolas, and finally pairs of lines.
The longest part of the paper deals with this last case, giving an exposi-
tion of part of Berry’s thesis. Most of the earlier results are given simply as
statements of fact, but, for the benefit of the newcomer to the area, the foun-
dational results of Kronecker and Robinson are discussed in a more leisurely
manner, complete with proofs.

On numerous occasions we shall use the shorthand ‘σ is an automorphism’
to mean that σ is an element of the Galois group of a finite Galois extension of
Q, containing all algebraic numbers under consideration at the time. The map
z 7→ √

z will always be the branch that maps C = {0}∪{z | −π < arg(z) ≤ π}
to {0} ∪ {z | −π/2 < arg(z) ≤ π/2}.
Acknowledgment. I am grateful to the referee for comments that led to a
slight strengthening of Theorem 24.

2. Kronecker’s Theorem (1857)

Theorem 1 (Kronecker, 1857 [8]). If α is an algebraic integer such that α

and all its conjugates have modulus at most 1, then either α = 0 or α is a

root of unity (αn = 1 for some positive integer n).

One simple proof of this fundamental result rests on the following obvious
Lemma.

Lemma 2. For any real numbers B and D, there are only finitely many

algebraic integers α of degree at most D such that α and all its conjugates

have modulus at most B.

Proof. The coefficients of the minimal polynomial of an algebraic integer α

are symmetric polynomials in its conjugates: if the degree and the size of
all the conjugates are bounded, then so are all the coefficients. Hence only
finitely many minimal polynomials of such α exist. �

Proof of Theorem 1. Let α be an algebraic integer such that α and all its
conjugates have modulus at most 1, and let D be the degree of α. Then
α

n ∈ Q(α) has degree at most D for all n, and since α and all its conjugates
have modulus at most 1, the same is true for α

n and all its conjugates.
Applying Lemma 2 (with B = 1), we deduce that the α

n cannot all be
distinct: α

m = α
n for some n 6= m. Thus either α = 0 or α is a root of

unity. �

An immediate consequence of Kronecker’s Theorem is that if α is a nonzero
algebraic integer with S(α) contained in the unit disc, then α and all its
conjugates lie on the unit circle. This more trivial result has a simpler proof:
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let c be the constant term in the minimal polynomial of such an α; then c is
a nonzero rational integer, so |c| ≥ 1; yet c is (plus or minus) the product of
α and all its conjugates, all with modulus at most 1, and hence all must have
modulus exactly 1.

Using the transformation z 7→ z + 1/z, Kronecker deduced that the only
totally real algebraic integers with all their conjugates in the interval [−2, 2]
are those of the form 2 cos(πq) with q ∈ Q. Robinson’s later work on circles
used an easy generalisation of this transformation, which we record here as a
Lemma.

Lemma 3. Given R
2 ∈ N, with R > 0, the map

θ : z 7→ z + R
2
/z

establishes a one-to-one correspondence between sets of conjugate algebraic

integers on |z| = R and sets of conjugate algebraic integers in the real interval

[−2R, 2R].

Proof. Suppose that α is an algebraic integer and that |α| = R. The key idea
is that on the circle |z| = R, the map z 7→ R

2
/z is just complex conjugation,

so maps algebraic integers to algebraic integers. Hence θ(α) is the sum of two
algebraic integers, so is an algebraic integer. Moreover θ(α) equals twice the
real part of α, so is in the interval [−2R, 2R]. Conversely, if β is an algebraic
integer in [−2R, 2R], with minimal polynomial mβ(x) of degree n, then the
preimages of β under θ (the numbers on |z| = R that have real part β/2) are
roots of z

n
mβ(z + R

2
/z), so are algebraic integers.

If R ∈ Q, then {R} corresponds to {2R} under θ, and {−R} corresponds to
{−2R}. If R 6∈ Q, then the conjugate set {R,−R} corresponds to {2R,−2R}.
Apart from these cases, θ is a two-to-one map: if α has degree n, then n = 2s
is even (conjugates occur in complex conjugate pairs), and S(α) corresponds
to a set of s algebraic integers in the open interval (−2, 2). These s numbers
form a conjugate set S

(

θ(α)
)

: none can have degree below s else α would
satisfy an equation of degree below 2s. �

Remark 4. Replacing the restriction R
2 ∈ N by R

2 ∈ Q, the map θ in Lemma

3 establishes a correspondence between conjugate sets of algebraic numbers on

|z| = R, and sets of conjugate algebraic numbers in the interval [−2R, 2R].
The map θ/2 could be used here if the interval [−R, R] is preferred.

This Remark illustrates the flavour of much of what follows, as we move
into the world of algebraic numbers rather than algebraic integers. In Remark
4 we relate the problem of finding algebraic numbers whose conjugates lie
on a special circle to that of finding totally real algebraic numbers with all
conjugates in a certain interval. Later results for algebraic numbers will
similarly relate conjugate sets on conics to conjugate sets contained in certain
intervals on the real line, or to conjugate sets that satisfy some other simple
description.
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3. Robinson’s work on intervals (1959–1962)

Although we shall on the whole avoid questions of integrality, such ques-
tions usually amount to establishing a map from the conic to the real line,
and then determining conditions on the totally real image of an algebraic
number α that are sufficient to imply the integrality of α. With this in mind,
Robinson’s work on algebraic integers whose conjugates lie in a real interval
assumes fundamental importance.

The remarks following Kronecker’s theorem show in particular that there
are infinitely many conjugate sets of algebraic integers contained in the real
interval [−2, 2]. By translation, the same is true for any real interval of
length 4 with integral endpoints. Schur showed that if |a| < 2 then the
interval [−a, a] can contain only finitely many sets of conjugate algebraic
integers, and Pólya pointed out to him that the argument could be extended
to any interval of length strictly less than 4 [14]. In 1959 ([10], [11], but see
[12] (1962) for the detail) Robinson established the result that if an interval
has length strictly greater than 4, then it contains infinitely many conjugate
sets of algebraic integers. In this section, we give Robinson’s proof of this
important result. Apart from the trivial cases mentioned above, nothing is
known about the case of a real interval of length exactly 4.

Theorem 5 (Robinson, 1962 [12]). Let I be a real interval of length strictly

greater than 4. Then I contains infinitely many sets of conjugate algebraic

integers.

This theorem underpins all the work on conjugate sets of algebraic integers
on conics. In all cases, the technique is to find some analogue of the map θ

used in the proof of Lemma 3 that sets up a correspondence between conjugate
sets on the conic and conjugate sets in an interval. The detail may be quite
subtle, as integrality is not generally preserved by rational maps, but the
punchline will always be an invocation of Theorem 5.

Robinson’s proof rests on an explicit formula for the coefficients of Cheby-
shev polynomials, Tn(x), defined by Tn(2 cos θ) = 2 cos(nθ) (n = 0, 1, 2, . . . ),
and satisfying the recurrence Tn+1(x) = xTn(x) − Tn−1(x) for n ≥ 1.

Lemma 6. The nth Chebyshev polynomial, Tn(x) is given by

Tn(x) = x
n +

dn/2e
∑

k=1

(−1)k n

k

(

n − k − 1
k − 1

)

x
n−2k

.

Proof. One can use induction and the recurrence formula, or see [12] for
another inductive proof that makes use of a related family of polynomials
satisfying the same recurrence. �

Proof of Theorem 5. Let I be a real interval of length strictly greater than 4.
Then we can choose a subinterval J ⊆ I with rational endpoints and length
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strictly greater than 4, say J = [c − 2λ, c + 2λ], where c and λ are rational
numbers (henceforth fixed), and λ > 1. For n = 0, 1, . . . , let

Pn(x) = λ
n
Tn

(

x − c

λ

)

,

where Tn(x) is the nth Chebyshev polynomial, defined above. Observe that
|Pn(x)| ≤ 2λn for x ∈ J , and that moreover Pn(x) oscillates n times between
the bounds ±2λn as x ranges over J .

From the explicit formula in Lemma 6, we can write

Pn(x) = x
n +

n
∑

k=1

akx
n−k

,

where ak is a polynomial in n of degree k, with rational coefficients. Moreover,
crucially, the explicit formula shows that n divides ak (as a polynomial in n).
Thus we have, for any fixed k,

ak =
r0n

k + r1n
k−1 + · · ·+ rk−1n

s
(1)

for some integers s, r0, r1, . . . , rk−1.
Since λ > 1, we can choose ` such that

λ
`(λ − 1) ≥ 1 . (2)

Take m to be the least common multiple of all the integers s appearing in (1)
for 1 ≤ k ≤ `. Let n be any multiple of m. Then the coefficients a1, . . . , a`

are integers, since the numerator in (1) is divisible by m and the denominator
divides m.

We now perturb the tail of Pn(x) to give a polynomial with integer coeffi-
cients that is close to Pn(x) on the interval J . We choose real numbers b`+1,
. . . , bn with 0 ≤ bk < 1 such that

Qn(x) = Pn(x) +

n
∑

k=`+1

bkPn−k(x)

has integer coefficients. Since |Pn−k(x)| ≤ 2λn−k for x ∈ J , we have (using
(2))

∣

∣Qn(x) − Pn(x)
∣

∣ <

∞
∑

k=`+1

2λn−k =
2λn

λ`(λ − 1)
≤ 2λn

for x ∈ J . Since the maxima and minima of Pn(x) in J have modulus 2λn,
the signs of Qn(x) and Pn(x) will agree at these critical points. Therefore
Qn(x) has a root between each consecutive pair of turning points of Pn(x) in
the interval J , and hence has n distinct roots in that interval.

Since there are infinitely many n that are multiples of m, we can produce
infinitely many Qn of degree n with integer coefficients and distinct roots in
J . This is enough to complete the proof. �
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Robinson gives a variant of the above argument that produces irreducible

polynomials Qn(x), although (as he observes) this is not needed for the main
result.

For algebraic numbers, the situation is much simpler:

Remark 7. Let I be an interval with positive length. Then I contains infin-

itely many conjugate sets of algebraic numbers.

Proof. We can translate I by a rational number without affecting either the
hypothesis or the conclusion, so may assume that 0 ∈ I. Take a positive ra-
tional number λ such that the scaled interval λI contains the interval [−2, 2].
Then the algebraic numbers (2/λ) cos(πq), for q ∈ Q, lie with all their conju-
gates in I. �

4. Circles with rational centre (1969)

In 1969, Robinson [13] posed the question: which circles |z−a| = R contain
infinitely many sets of conjugate algebraic integers? It is clear that a must
be real, for any conjugate sets must lie on the intersection of the circle and
its reflection in the real axis. Robinson gave a complete answer (Theorem 8
below) to his question for rational values of a. We use C(a, R) to denote the
circle |z − a| = R.

Theorem 8. Let a = p/q, where p ∈ Z, q ∈ N, and gcd(p, q) = 1. Let R be

a positive real number. Then C(a, R) contains infinitely many conjugate sets

of algebraic integers in precisely the following cases:

• q = 1 and R
n ∈ Z for some n ∈ N;

• q ≥ 2, R > q, and q(R2 − a
2) ∈ Z;

• q = 2, R > 2, and 4(R4 − 1/16) ∈ Z.

Robinson considered also the easier problem of which circles C(a, R) con-
tain infinitely many conjugate sets of algebraic numbers, with a ∈ Q:

Remark 9. Let R be a positive real number and let a be a rational number.

Then the following statements are equivalent:

(1) C(a, R) contains a conjugate set of algebraic numbers;

(2) R
n ∈ Q for some n ∈ N;

(3) C(a, R) contains infinitely many conjugate sets of algebraic numbers.

Proof. By translation, the result holds for any rational a if and only if it holds
for a = 0, which we now suppose.

Clearly (3) implies (1).
Suppose that (1) holds, and that P (z) = z

n+c1z
n−1+· · ·+cn is a polynomial

with rational coefficients and all its roots on the circle C(0, R). Since roots
occur in complex conjugate pairs, except possibly for ±R, the product of all
the roots of P (z) is ±R

n. Hence R
n = ±cn ∈ Q, which gives (2).

Suppose that (2) holds. We may suppose that n = 2m is even (if not, then
double it). By Remark 7, the interval [−2Rm

, 2Rm] contains infinitely many



James McKee 217

sets of conjugate algebraic numbers, and by Remark 4 the same is true for
the circle C(0, R2m) (using R

2m ∈ Q). Taking the mth roots of such sets give
infinitely many conjugate sets of algebraic numbers on C(0, R), and so (3)
holds. �

Robinson gave more detail about the structure of possible conjugate sets
on C(0, R). Suppose that P (z) = z

n + c1z
n−1 + · · · + cn is an irreducible

polynomial with rational coefficients and all its roots on C(0, R). Since the
set of roots of P (z) is closed under complex conjugation, and on C(0, R)
complex conjugation is given by z 7→ R

2
/z, we must have

cnP (z) = z
n
P (R2

/z) .

Equating coefficients of z
k gives (for 1 ≤ k ≤ n)

cncn−k = R
2n−2k

ck .

From the proof of Remark 9 we see that R
n ∈ Q, and hence R

2k is rational
whenever ck 6= 0. The set of values of k for which R

2k ∈ Q is an additive
subgroup of Z, and hence equals `Z for some `. Thus ck = 0 unless ` | k, and
note also that ` | n since R

2n ∈ Q. Hence P (z) = Q(z`) for some polynomial
Q(z) with rational coefficients. The roots of Q all lie on C(0, R`). Combining
this with Remark 4 we have extracted the following from Robinson’s work,
as noted in [4]:

Theorem 10. Let R be a positive real number, some power of which is ratio-

nal. Let ` ∈ N be minimal such that R
2` ∈ Q. Then the minimal polynomial

over Q of an algebraic number lying with all its conjugates on C(0, R) is one

of the following:

• z
` ± R

` (only possible if R
` ∈ Q);

• z
2` − R

2` (only possible if R
` 6∈ Q);

• z
`s

P (z` + R
2`

/z
`) for some irreducible monic polynomial P ∈ Q[z] of

degree s, having all its zeros in the open interval (−2R`
, 2R`).

Conversely, each such polynomial is the minimal polynomial of a conjugate

set of algebraic numbers lying on C(0, R).

5. Circles with irrational centre (1973–1976)

Robinson [13] conjectured that if a is not rational, then no circle C(a, R)
can contain infinitely many conjugate sets of algebraic integers. In 1973, En-
nola [5] disproved this conjecture. He gave a precise description of the circles
C(a, R) that contain infinitely many conjugate sets of algebraic numbers un-
der the restriction that a is totally real, and then dealt with the more difficult
problem of integrality in this restricted case.

Ennola observed first that if C(a, R) contains infinitely many conjugate
sets of algebraic numbers, then the centre a must be algebraic, and then
restricted attention to the special case where a is totally real. In this case, he
gave necessary conditions for a circle to contain at least one set of conjugate
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algebraic numbers with at least three members, and then showed that such
circles contain infinitely many conjugate sets. This latter part was achieved
with the aid of a 4-to-1 map from the circle to a real interval. For questions of
integrality, one invokes Theorem 5, but this is slightly delicate as one needs to
study which preimages of the 4-to-1 map are actually integers: see the paper
[5] for details. Here we content ourselves with a sketch of the ideas as they
apply to algebraic numbers.

The first observation in the previous paragraph is trivial:

Remark 11. If a and R are not both algebraic numbers, then C(a, R) can

contain at most two algebraic numbers.

Proof. If z is algebraic, then so are its real and imaginary parts. Suppose
that x1 + iy1 and x2 + iy2 both lie on C(a, R), and that both are algebraic.
If x1 6= x2, then the equation (x1 − a)2 + y

2

1
= (x2 − a)2 + y

2

2
would give a

algebraic, and then the equation (x1 − a)2 + y
2

1
= R

2 would give R algebraic.
So if a and R are not both algebraic then we must have x1 = x2, and hence
at most two algebraic numbers on the circle. �

We can push this a little further, and note that if the centre is not rational,
then the number of conjugate sets of degree at most two is tiny.

Remark 12. If a is not rational, then for any fixed R > 0, C(a, R) contains at

most two rational points and at most one pair of conjugate quadratic algebraic

numbers.

Proof. The first point is trivial, and the second is almost so. Suppose that
z = x + iy is a quadratic number on the circle C(a, R). Then x, y

2 ∈ Q. If
we had two such quadratic numbers x1 + iy1 and x2 + iy2 with x1 6= x2, then
the equation (x1 − a)2 + y

2

1
= (x2 − a)2 + y

2

2
would give a ∈ Q. �

To make further progress, Ennola exploits the use of field automorphisms.
Suppose that P (z) is an irreducible polynomial of degree n ≥ 3 with rational
coefficients, and with all its roots z1, . . . , zn on C(a, R). Ennola establishes
the remarkable result that if a is totally real then

(

a − θ(a)
)2

= R
2 + θ(R2) (3)

for all automorphisms θ such that θ(a) 6= a.
To show this, we start with the equation of our circle

(z − a)(z̄ − a) = R
2
.

For 1 ≤ i ≤ n, and any automorphism θ, write

θ(zi) = a + Rξi , θ(z̄i) = a + Rηi ,

and then applying θ to the equation of the circle gives

R
2
ξiηi + R

(

a − θ(a)
)

(ξi + ηi) +
(

a − θ(a)
)

2 − θ(R2) = 0 .
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We suppose that a is irrational (else we can apply Robinson’s work), and take
θ such that θ(a) 6= a. Solving for ηi, gives

ηi =
A + Bξi

C + Dξi

where A = θ(R2) −
(

a − θ(a)
)2

, B =
(

θ(a) − a
)

R, C = −B, D = R
2.

Since we can take at least three different values of i, and |ηi| = |ξi| = 1, the
bilinear map z 7→ A+Bz

C+Dz
maps the unit circle to itself. From the theory of

bilinear mappings ([3], page 351, or see Ennola’s paper for a slightly different
but equivalent treatment), AC̄ = BD̄, giving (and crucially using that a is
totally real)

θ(R2) −
(

a − θ(a)
)2

= −R
2
,

which is (3).
Next we show that a is at worst cubic, and that a and R

2 are tied together
rather closely.

Theorem 13. Suppose that P (z) is an irreducible polynomial of degree n ≥ 3
with rational coefficients, and with all its roots z1,. . . ,zn on the circle C(a, R),
and that a is irrational and totally real. Then there is a cubic polynomial

g(x) = x
3 + Ax

2 + Bx + C with rational coefficients such that both g(a) = 0
and R

2 = g
′(a).

Proof. We have equation (3) for all automorphisms θ such that θ(a) 6= a.
If a is quadratic, then taking θ such that θ(a) 6= a we have θ

2(a) = a, and
(3) gives a

′ = a − R
2
/
(

a − θ(a)
)

∈ Q. Then g(z) = (z − a)
(

z − θ(a)
)

(z − a
′)

works.
If a has degree at least 3, then we can take automorphisms θ1, θ2 such that

a, θ1(a), θ2(a) are distinct. From (3) with θ = θ1, θ = θ2, and θ = θ
−1

1
θ2 (and

then applying θ1 to this last), we get

R
2 + θ1(R

2) =
(

a − θ1(a)
)

2

,

R
2 + θ2(R

2) =
(

a − θ2(a)
)2

,

θ1(R
2) + θ2(R

2) =
(

θ1(a) − θ2(a)
)2

.

Subtracting the third of these from the sum of the previous two gives (after
dividing by 2)

R
2 =

(

a − θ1(a)
)(

a − θ2(a)
)

. (4)

If a had degree 4 or more, then we could choose θ3 with θ3(a) distinct from
a, θ1(a), θ2(a), and replace θ2(a) by θ3(a) in (4), giving two distinct values
for R

2. We conclude that a has degree 3, with minimal polynomial

(z − a)
(

z − θ1(a)
)(

z − θ2(a)
)

,

and (4) gives R
2 = g

′(a). �
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We remark that since R
2

> 0, equation (4) shows that for a cubic and
totally real, a is either the smallest or the largest of its conjugates. Moreover
that same equation gives the pleasing geometric result that the other two
conjugates of a are inverse points with respect to our circle.

If a is a quadratic or cubic real number that is a root of the polynomial
g(x) = X

3 + Ax
2 + Bx + C (with rational coefficients), and g

′(a) > 0, then
defining R > 0 by R

2 = g
′(a), Ennola shows that there are infinitely many

conjugate sets of algebraic numbers lying on the circle C(a, R). The method
of proof is to construct a rational map from the circle to a real interval, and
apply Remark 7. We merely sketch the details here.

Writing g(z) = (z − a)(z − a2)(z − a3), the equation of our circle is (using
R

2 = g
′(a))

(z − a)(z̄ − a) = (a − a2)(a − a3) .

From this, a little algebra gives g(z) = (z−a)2(z + z̄−a2 −a3) whenever z is
on the circle. This implies that g(z)/(z − a)2 is real for z on the circle. The
same is true for the quartic f(z) = z

4−2Bz
2 −8Cz +B

2−4AC, since on the
circle this equals (z − a)2

(

(z + z̄)2 − 4a2a3

)

. Hence the map z 7→ f(z)/g(z)
sends the circle to the real line, and Ennola notes that the image is the
interval between 4a and 4a′, where a

′ is the nearer of a2 and a3 to a. There
are infinitely many algebraic numbers in this interval, and their preimages lie
with their conjugates on the circle: Ennola’s proof of this requires an explicit
description of the inverse map.

To disprove Robinson’s conjecture, the question of integrality is raised, and
Ennola gives conditions for the existence of infinitely many conjugate sets of
algebraic integers on a circle with totally real irrational centre, for which we
refer the reader to his paper [5].

Moving to centres that are not totally real, Ennola and Smyth cleverly
combine field automorphisms with a group of bilinear maps (sometimes called
Möbius, or homographic, or linear fractional, or fractional linear, and called
linear in [7]; these are maps of the form z 7→ (az+b)/(cz+d)) that permute the
conjugates of the centre. The starting point is the observation (generalising
Robinson) that complex conjugation on C(a, R) can be realised as a bilinear
map:

Γ : z 7→ az + R
2 − a

2

z − a
.

On C(a, R), z̄ = Γ(z).
Suppose that S(β) ⊆ C(a, R), where a is not totally real. After Remark

12 we may restrict attention to n ≥ 3. If S(a) = {a1, . . . , ad}, then we can
choose automorphisms θi (1 ≤ i ≤ d) with θi(a) = ai. For 1 ≤ i ≤ d, define
the bilinear map Γi by applying θi to the coefficients of Γ:

Γi : z 7→ aiz + θi(R
2) − a

2

i

z − ai

.
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The Γi permute the conjugates of β, for if θ is any automorphism then

Γi

(

θ(β)
)

= θi

(

Γ
(

θ
−1

i θ(β)
)

)

.

As John Conway pointed out (note added in proof in [7]), the group H gener-
ated by the Γi is a subgroup of the symmetric group on n symbols (permuting
the conjugates of β), and each element of H either preserves or reverses the
order of the conjugates of β on the circle, hence H is dihedral or cyclic.
Ennola and Smyth show that H is in fact dihedral, and that there are real
numbers ρ1 and ρ2 (satisfying (x−ρ1)(x−ρ2) = x

2 + cx+ b for some rational
c and b, and with ρ1, ρ2 inverse with respect to our circle) such that each ΓiΓ
has ρ1 and ρ2 as fixed points. From this, the general shape of the minimal
polynomial of the centre a, and of β, can be deduced. Having introduced the
key players in their proof, we now merely quote their results.

Let B be the set of those algebraic numbers β of degree at least 3 such that
S(β) ⊆ C

(

a(β), R(β)
)

(for some a(β), R(β)). Divide B into disjoint subsets:

B∗ = {β ∈ B | some conjugate of β is real} ,

Btr = {β ∈ B | β totally imaginary, a(β) totally real} ,

Bn = {β ∈ B | β totally imaginary, a(β) of degree n and not totally real} .

The set Btr is treated above in Robinson and Ennola’s earlier work.
Given rational numbers s, b, c, with c

2
> 4b, let ρ1 < ρ2 be the (real) roots

of x
2 + cx + b = 0. Take n to be an integer that is at least 3, and define

ξ1 = s− nρ1, ξ2 = s− nρ2, d = ξ1ξ2 = s
2 + nsc + n

2
b. Put K = Q(ρ1), which

either equals Q or is a quadratic extension of it. If d > 0, then we define ∆
to be the open interval (−2

√
d, 2

√
d), and we then let A denote the set of all

totally real algebraic numbers all of whose conjugates lie in ∆. Define

g(z) =
(

ξ2(z − ρ1)
n − ξ1(z − ρ2)

n
)

/(ξ2 − ξ1) , (5)

noting that this depends on the choice of n, s, b, and c. Put η = ξ1/ξ2, and
χ = 1 or 2 according as n is even or odd.

Theorem 14. Every β ∈ B∗ has minimal polynomial of the form g(z), given

by (5), for some n ≥ 3 and some s, b, c ∈ Q satisfying c
2

> 4b, d 6= 0, and

η 6∈ K
p for each odd prime p|n, and, if n is even, d > 0, d 6∈ Q2

. (6)

Conversely, given n ≥ 3 and s, b, c ∈ Q satisfying c
2

> 4b, d 6= 0 and (6),

the polynomial g(z) defined by (5) is irreducible over Q and has all its zeros

on a circle, and moreover in B∗, for χ of these zeros are real. The centre of

the circle has degree n/χ over Q.

Theorem 15. Every β ∈ Bn has minimal polynomial of the form

P (z) = A

∏

j

(

ξ2(z − ρ1)
2n + ξ1(z − ρ2)

2n − αj(z
2 + cz + b)n

)

, (7)
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where α ∈ A has conjugates αj, the constant A is rational, and s, b, c ∈ Q

satisfy c
2

> 4b, d > 0, and (6).

Conversely, given α ∈ A, n ≥ 3, and s, b, c ∈ Q such that c
2

> 4b, d > 0,
and (6) holds, the polynomial P (z) given by (7) is irreducible over Q, all its

zeros βi are non-real, and the βi lie on the circle C(a, b + ac + a
2), where a is

the only real zero of g(z) (given by (5)) if n is odd, and a is the real zero of

g(z) further from −c/2 if n is even. Thus βi ∈ Bn.

Chris Smyth points out that if an algebraic number is in either B∗ or Bn,
with all its conjugates on the circle C, then the centre of C lies in B∗ (unless
its degree is below 3). In this way one gets a nest of smaller and smaller
circles.

6. Parabolas, ellipses and hyperbolas (1982)

We simply quote the results from Smyth [16].
Define

SP = {algebraic F ∈ R | F > 0,
all other conjugates of F are < 0} ,

SE = {algebraic B ∈ R | B > 1,
all other conjugates have modulus less than 1} ,

SH = {algebraic B | B
2 6= 1, |B| = 1,

all conjugates other than B
±1 are real} .

The sets of algebraic numbers whose conjugates all lie on a parabola, ellipse,
or hyperbola, will be described in terms of these sets. Note that SE contains
the set of Pisot numbers, and that the image of SH under z 7→ z + 1/z is the
set of totally real algebraic numbers γ such that γ ∈ (−2, 2) and all other
conjugates of γ have modulus greater than 2.

For an algebraic number B, we define k(B) to be the smallest positive
integer such that B

k(B) has no conjugate of the form ωB
±k(B), for a non-

trivial root of unity ω. As before, we use Tk for the Chebyshev polynomial of
degree k.

For a, F ∈ R, with F > 0, let P (a, F ) be the parabola in the complex
plane with equation

z(t) = a + (t + iF/2)2
/F , (t ∈ R) .

For B, a, R ∈ R, with R > 0, B > 1, and with ε = ±1, let E(a, R, B, ε) be
the ellipse

z(t) = a + R
(

t

√
B + ε/(t

√
B)
)

, (t ∈ R) .

For a, R ∈ R, with R > 0, and with ε = ±1, and for B ∈ C with |B| = 1
and B 6= ±1, let H(a, R, B, ε) be the hyperbola

z(t) = a + R
(

t

√
B + ε/(t

√
B)
)

, (t ∈ R) .
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Theorem 16. Suppose that α is an algebraic number of degree at least 9 with

S(α) ⊆ P (a, F ). Then a ∈ Q, F ∈ SP , and α has a conjugate of the form

a + 1

4

(

√

β +
n
∑

j=1

√

−Fj

)2

, (8)

where {F = F1, . . . , Fn} is the set of conjugates of F , and β is totally positive.

Conversely, given such a, F and β, the number given by (8) lies with all its

conjugates on P (a, F ).

Theorem 17. Suppose that α is an algebraic number of degree at least 25
with S(α) ⊆ E(a, R, B, ε). Then a, R

2 ∈ Q, B
k(B) ∈ SE.

Put

α
∗ = Tk(B)

(

(α − a)
√

ε

R

)

. (9)

Then S(α∗) ⊆ E(0, 1, Bk(B)
, 1).

In view of this, we need only consider a = 0, R = 1, k(B) = 1, ε = 1. In

this case, α has a conjugate of the form ν + 1/ν, where

ν = 1

2

(

β +
√

β2 − 4
)

(

n
∏

j=1

Bj

)1/2

, (10)

where B = B1 and either B ∈ Q and n = 1 or {B±1

1
, . . . , B

±1

n } is the conjugate

set of B. Moreover β is totally real, and lies with its conjugates in the interval

[−2, 2].
Conversely, suppose that B

k(B) ∈ SE and β totally real with all conjugates

in [−2, 2]. Define ν by (10). Then α
∗ = ν + 1/ν lies with all its conjugates

on E(0, 1, Bk(B)
, 1). Suppose further that a, R

2 ∈ Q, and ε = ±1. Then if α

is a root of (9), S(α) ⊆ E(a, R, B, ε).

Theorem 18. Suppose that α is an algebraic number of degree at least 25
with S(α) ⊆ H(a, R, B, ε). Then a, R

2 ∈ Q, k(B) = 1 or 2, and B
k(B) ∈ SH .

If B 6= ±i, and α
∗ is defined by (9), then S(α∗) ⊆ H(0, 1, (εB)k(B)

, 1).
Furthermore if k(B) = 2 then t is positive. If B = ±i, then α

∗ = (α − a)2

lies with all its conjugates on the vertical line <(z) = 2εR2, and hence α
∗ =

2εR2 + iβ for some totally real β (see Lemma 19 below).

In view of this, we need only consider B 6= ±i, a = 0, R = 1, k(B) = 1,
ε = 1. Then α has a conjugate of the form ν + 1/ν, where ν is given by

(10), with {B±1

1
, . . . , B

±1

n } the conjugate set of B, and β totally real, with all

conjugates having modulus at least 2.
Conversely, let B ∈ SH , B 6= ±i, and let β be totally real, with all conju-

gates of β having modulus at least 2. Let a, R
2 ∈ Q, ε = ±1, and B

k(B) ∈ SH .

Define α
∗ = ν + 1/ν, where ν is given by (10). Then if α is a root of (9),

S(α) ⊆ H(a, R, B, ε).
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And if B = ±i, β is totally real, a ∈ Q, and R
2 ∈ Q, then α = a +

√

2εR2 + iβ lies with all its conjugates on H(a, R, B, ε).

A non-trivial Corollary in [16] is that if a parabola contains infinitely many
conjugate sets of algebraic numbers then its focus is rational, and that if
an ellipse or a hyperbola contains infinitely many conjugate sets of algebraic
numbers then its foci are either rational or are conjugate quadratic numbers.

7. Pairs of lines (2003)

7.1. A single line. For a real number p, let L(p) denote the straight line
<(z) = p.

Lemma 19. Let α be an algebraic number that lies with its conjugates on

a single straight line in the complex plane. Then either α is totally real, or

α = p + iβ, where p ∈ Q and β is totally real.

Proof. We follow the argument in [16]. Clearly if α is not totally real, then
the straight line in question is of the form L(p), for some p ∈ R. Indeed if α

′

is any non-real conjugate of α, then p = (α′ + α′)/2, so that p is algebraic.
Let p

′ be any conjugate of p. Then p
′ = (α′′ + α′′)/2 for some α

′′ that is a
conjugate of α, and hence p

′ ∈ L(p). Thus

p
′ + p′ = 2p . (11)

Let σ be an automorphism that sends p to one of the conjugates of p that
has maximal absolute value. Applying σ to equation (11), we get

p1 + p2 = 2σ(p) ,

for some p1 and p2 that are conjugates of p. From our maximality assumption,
we must have p1 = p2, hence p

′ = p′, so p
′ is real, and p = <(p′) = p

′. Thus
p ∈ Q.

It is clear now that β is totally real, for if β
′ is any conjugate of β, then

one of p ± iβ
′ is a conjugate of p + iβ = α, and hence β

′ must be real. �

Remark 20 (Lemma 1(a) in [16]). The idea used in the above proof (applying

an automorphism that sends an algebraic number to a conjugate with maximal

absolute value) can be used similarly to show that for any distinct conjugate

algebraic numbers α1, α2, α3 one never has

α1 ± α2 = ±2α3 ,

for any choice of signs.

7.2. The four cases: +, =, ||, ×. Let α be an algebraic number that lies
with its conjugates on a pair of straight lines in the complex plane, but not
on a single line. Since we can draw two straight lines to cover any four points,
we shall suppose that α has degree at least 5. If all the non-real conjugates
of α have the same real part p, then the pair of lines is

R ∪ L(p) ,
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and for obvious geometric reasons we refer to this as the ‘+’ case. Note that
this case covers all α that have only two non-real conjugates.

If α has non-real conjugates α1, α2 with different real parts p and q, then
there are three possible ways to draw two straight lines through all of α1, α1,
α2, α2. If all non-real conjugates have imaginary part ±k for some k, then a
possible pair of lines is

Ξ(k) := {z : =(z) = k} ∪ {z : =(z) = −k} ,

which we call the ‘=’ case. If p and q are the only real parts of any conjugates
of α, then a possible pair of lines is

L(p) ∪ L(q) ,

which we call the ‘||’ case. Finally, there is the ‘×’ case, where each line is
neither horizontal nor vertical. The pair of lines is then of the shape:

X(a, θ) := {z : z = a + te
±iθ

, for some t ∈ R} ,

for some real number a (the point where the two lines intersect) and some
angle θ ∈ (0, π/2).

Our task now is to determine, for each of the four cases (+, =, ||, ×) which
algebraic numbers lie with all their conjugates on such a pair of lines. As for
non-degenerate conics, we shall give ourselves the flexibility of considering
only algebraic numbers of sufficiently large degree, and we shall be content
with a description in terms of algebraic numbers of some more simple special
form.

7.3. The + case. If α has just two non-real conjugates, then it lies with all
its conjugates on the pair of lines R ∪ L(p), where p is the real part of the
pair of non-real conjugates, and we can say nothing more about this case. All
other possibilities for the + case are covered by the following Theorem.

Theorem 21. Let p and q be totally real algebraic numbers with q < 0, and

with Q(p) ⊆ Q(q). Let mq be the minimal polynomial of q, which of course

splits over Q(p) as mq = fqgq, where fq is the minimal polynomial of q over

Q(p). Suppose that all the roots of gq are positive, and that fq has at least

two negative roots. Then α = p +
√

q has more than two non-real conjugates,

and S(α) ⊆ R ∪ L(p). Moreover all algebraic numbers β with more than two

non-real conjugates such that S(β) ⊆ R ∪ L(p) for some p arise in this way.

Proof. Suppose that p, q satisfy all the conditions of the Theorem, with p of
degree r and q of degree rs. Then mq has degree rs, and splits over Q(p)
as a product of s polynomials of degree r, one of which is fq, and the others
have only positive roots. Let G be the Galois group of the normal closure of
Q(q). If θ ∈ G, then θ(p) = p if and only if θ(q) is a root of fq. If β is any

non-real conjugate of α = p +
√

q, then β = θ(p) ±
√

θ(q) for some θ ∈ G,
and being non-real implies that θ(q) < 0, hence θ(q) is a root of fq, implying
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that θ(p) = p, and β lies on L(p). The fact that fq has at least two negative
roots implies that α has at least four non-real conjugates.

The converse requires the work, of course. Suppose that β has more than
two non-real conjugates and that S(β) ⊆ R ∪ L(p). The proof proceeds in
four steps: (i) p is totally real; (ii) letting p +

√
q be one of the non-real

conjugates of β, with q < 0, q is totally real; (iii) p ∈ Q(q); (iv) mq has the
desired form.

Step (i): p is totally real. Take β1 and β2 to be non-real conjugates of β

with distinct imaginary parts. Then we have

β1 + β1 = β2 + β2 = 2p . (12)

Applying any automorphism ϕ gives

ϕ(β1) + ϕ(β1) = ϕ(β2) + ϕ(β2) = 2p′ , (13)

say. Suppose first that ϕ(β1) is real, and ϕ(β1) = p + iq is not. Now

• if ϕ(β2) and ϕ(β2) are both real, then (13) gives a contradiction, as
ϕ(β1) + ϕ(β1) is not real;

• if ϕ(β2) and ϕ(β2) both have real part p, then equating real parts in
(13) gives ϕ(β1) = p, and then (12) gives a contradiction with Remark
20;

• if one of ϕ(β2) and ϕ(β2) is real and the other has real part p, then
equating real parts in (13) we see that the real one equals ϕ(β1),
contradicting distinctness of β1, β2, β2.

A similar contradiction occurs if ϕ(β1) is real and ϕ(β1) is not. Thus ϕ(β1)
and ϕ(β1) are either both real, or both have real part p. Next suppose that
both ϕ(β1) and ϕ(β1) are real. Then p

′ is real, by (13). Finally, if both ϕ(β1)
and ϕ(β1) have real part p, then adding (13) to its complex conjugate gives
4p = 2p′ + 2p′, contradicting Remark 20.

Step (ii): putting β
′ = p+

√
q for one of the non-real conjugates of β, with

q real and negative, we show that q is totally real. Applying automorphisms
to

(β ′ − β ′)2 = 4q ,

and gleaning from the proof of Step (i) that any automorphism either maps
both β

′ and β ′ to the real line, or both to the line L(p), we see that all
conjugates of q are real.

Step (iii): p ∈ Q(q). For if not, we could take an automorphism fixing
q but not p, and hence mapping p +

√
q to p

′ ± √
q with p

′ 6= p, giving a
conjugate of β that is not on R ∪ L(p).

Step (iv): mq has the desired form. We have that q = (β − p)2
< 0 is

a root of fq, the minimal polynomial of q over Q(p), and indeed the other
roots of fq will be of the form (β ′ − p)2, where β

′ is a conjugate of β. Since
β is assumed to have more than two non-real conjugates, there will be some
β
′ 6∈ {β, β} with real part p, giving at least two negative roots for fq. The
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roots of gq = mq/fq are of the form (β ′ − p
′)2, where β

′ is a conjugate of β

and p
′ 6= p is a conjugate of p. Since q is totally real, β

′ must be real (the
alternative of having real part p leads to (β ′ − p

′)2 not being real), and hence
the roots of gq are all positive. �

7.4. The = case.

Theorem 22. Let h = h1 be a totally real algebraic number, with h < 0, and

with all other conjugates h2, . . . , hd being positive. Let r be a totally real

algebraic number, and let εj ∈ {1,−1} for 1 ≤ j ≤ d. Then the algebraic

number

α = r + ε1

√
h + ε2

√

h2 + · · ·+ εd

√

hd (14)

lies with all its conjugates on Ξ(
√
−h).

Conversely, any algebraic number β with S(β) ⊆ Ξ(k) (for some k > 0)
arises in this way, with h = −k

2.

Proof. Applying any automorphism to (14) will permute the hj, change the
sign of some of the εj, and send r to the real line, hence mapping α to another

element of Ξ(
√
−h). Proving the converse requires rather more effort.

Suppose that β lies with all its conjugates on Ξ(k), and put h1 = −k
2.

Then certainly h1 < 0. The proof proceeds in three steps: (i) h1 is totally
real; (ii) the other conjugates of h1 (h2, . . . , hd, say) are all positive; (iii)
there is a choice of the εj that makes r = β − ε1

√
h1 − ε2

√
h2 − · · · − εd

√
hd

totally real.
Step (i): h1 is totally real. Putting γ = β−β, we have γ = ±2ki. Applying

an automorphism ϕ, we have

γ
′ := ϕ(γ) = ϕ(β) − ϕ(β) = β

′ − β
′′ = ±2ϕ(k)i , (15)

where β
′ = ϕ(β) and β

′′ = ϕ(β). Since β
′ and β

′′ are on Ξ(k), we have that
γ
′ is either real, or has imaginary part ±2k. Suppose that γ

′ = η ± 2ki for
some non-zero real η. Then

γ
′ − γ′ = ±4ki = ±2γ , (16)

contradicting Remark 20. Hence γ
′ is either real or purely imaginary. Hence

ϕ(h1) = ϕ(2ki)2
/4 = (γ′)2

/4 is real. Thus h1 is totally real.
Step (ii): h2, . . . , hd are all positive. For suppose that hi 6= h1 is a

negative conjugate of h1. Taking ϕ that maps h1 to hi, we have (using
β − β = ±2ki = ±2

√
h1)

ϕ(β) − ϕ(β) = ±2
√

hi ,

and similar reasoning to that in Step (i) shows that this is either real or equal
to ±2

√
h1. Since the former case is excluded (hi < 0) we have

√
hi = ±

√
h1,

so that hi = h1, a contradiction.
Step (iii): there is a choice of the εj that makes

r = β − ε1

√

h1 − ε2

√

h2 − · · · − εd

√

hd
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totally real. Choose automorphisms ϕ1, . . . , ϕd such that ϕi(hi) = h1. The
imaginary part of ϕi(β) is ±k, so we can choose εi such that ϕi(β − εi

√
hi) is

real. For these εi, define r by r = β − ε1

√
h1 − ε2

√
h2 − · · · − εd

√
hd, so that

β = r + ε1

√

h1 + · · ·+ εd

√

hd . (17)

Note that since ϕi(β − εi

√
hi) is real, and ϕi permutes the hj, and all the hj

for j > 1 are positive, we have that ϕi(r) is real. Now we claim that for any
j between 1 and d, if we define

δi =

{

εi if i 6= j ,

−εi if i = j ,

then βj = r +
∑d

i=1
δi

√
hi is a conjugate of β. For if we apply ϕj to (17),

then apply complex conjugation, then apply ϕ
−1

j , we get βj. Crucially this
uses the fact that ϕj(r) is real.

We now have enough information to see that r is totally real. For suppose
that ϕ(r) is not real. Then the imaginary part of ϕ(r) must be ±2k, from
(17). Define j by ϕ(hj) = h1. Then the imaginary parts of ϕ(β) − ϕ(r) and
ϕ(βj) − ϕ(r) both have magnitude k, but have opposite signs, so that not
both ϕ(β) and ϕ(βj) lie on Ξ(k), a contradiction. �

7.5. The || case.

Theorem 23. (i) Let p and q be distinct real algebraic numbers, neither of

them rational, such that p + q is rational, and h1 = (p− q)2
/4 is totally real,

with all other conjugates of h1 (h2, . . . , hd, say) being negative. Let r be a

totally real algebraic number, and let εj = ±1 for j in the range 1 ≤ j ≤ d.

Then

α =
p + q

2
+ ε1

√

h1 + · · · + εd

√

hd + ir

lies with all its conjugates on L(p) ∪ L(q).
(ii) Let p be a real cubic algebraic number that has two non-real conjugates

with real part q, and let r be totally real. Then

α = p + ir

lies with all its conjugates on L(p) ∪ L(q).
(iii) All algebraic numbers β that lie with all their conjugates on some

L(p) ∪ L(q), but not on a single line, arise as one of (i) or (ii).

A simple idea to transform the || case to the = case is to multiply α −
(p + q)/2 by i. In some cases, this achieves the desired reduction, but there
is more to the story than this, as evinced by part (ii) of the Theorem, which
has no analogue in the = case.

Proof. It is clear that for either (i) or (ii) we have S(α) ⊆ L(p) ∪ L(q).
There remains (iii). We suppose that β lies with all its conjugates on some
L(p) ∪ L(q), but not on a single line.
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We proceed in six steps: (i) the number of conjugates of β on each of the
two lines is either 1 or is even; (ii) p and q are not rational; (iii) if ϕ maps a
conjugate of β from one line to the other, then it maps either half or all of the
conjugates from that one line to the other; (iv) the numbers of conjugates of β

on each of the two lines are either equal, or one is twice the other; (v) the case
where the numbers of conjugates on the two lines are equal is covered by the
first part of the Theorem; (vi) the case where one line has twice the number
of conjugates of the other is covered by the second part of the Theorem.

Step (i): the number of conjugates of β on each of the two lines is either
1 or is even. This is almost immediate from Remark 20, for if say there were
an odd number of conjugates on L(p), then one of these would equal p, and if
there were any others, then the sum of a complex conjugate pair would give
2p, contradicting the Remark.

Step (ii): p and q are not rational. Suppose that p, say, were rational. If
L(p) contained just one conjugate of β, then this would be p, and since not
all conjugates lie on the same line we would have p being conjugate to some
other number, contradicting p ∈ Q. We are reduced to the case where the line
L(p) contains a non-real conjugate of β, say β1. Applying an automorphism
ϕ that sends β1 to a number on the other line, L(q), and equating real parts
in ϕ(β1)+ϕ(β1) = 2p gives either q + p = 2p or 2q = 2p, contradicting p 6= q.

Step (iii): if ϕ maps a conjugate of β from one line to the other, then it
maps either half or all of the conjugates from that one line to the other. Let
us suppose that ϕ(β1) has real part q, where β1 is a conjugate of β with real
part p. If β1 is the only conjugate on its line, then the conclusion of Step
(iii) is trivial; so we may suppose not, and that by Step (i) there are an even
number of conjugates β1, β1, . . . , βc, βc with real part p.

Applying ϕ to β1 + β1 = 2p, and taking real parts, gives

q + <
(

ϕ(β1)
)

= 2<
(

ϕ(p)
)

,

and hence ϕ(p) has real part either q or (p + q)/2. If the real part of ϕ(p) is
q, then all of the conjugates on L(p) will be mapped to L(q); if the real part
of ϕ(p) is (p + q)/2, then each complex conjugate pair of conjugates of β on
L(p) will be mapped one to each line, so that exactly half of the conjugates
on L(p) will be mapped to L(q).

Step (iv): the numbers of conjugates of β on the two lines are either equal
(d/2 on each) or one is twice the other (d/3 on one line and 2d/3 on the
other). Let ϕ map a conjugate with real part p to one with real part q; then
it must map some conjugate with real part q to one with real part p. Split
the conjugates of β into four sets, Bpp, Bpq, Bqp, Bqq, where γ ∈ Brs means
that γ has real part r and ϕ(γ) has real part s. Let brs = |Brs|. We have of
course that bpq = bqp. By Step (iii), we have either bpq = bpp or bpp = 0; and
either bqp = bqq or bqq = 0. All four cases give bpp + bpq = r(bqp + bqq), where
r = 1, 2, or 1/2.
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Step (v): the case where the numbers of conjugates on the two lines are
equal is covered by the first part of the Theorem. First we show that in this
case p+q is rational. Note from the proof of Step (iii) that any automorphism
either preserves the sets of conjugates on the two lines (Type 1), or sends
conjugate pairs to different lines (Type 2). Say β has real part p, and ϕ(β)
has real part q. Then applying automorphisms to

p + q =
(

β + β + ϕ(β) + ϕ(β)
)

/2

we see that p + q is fixed by automorphism of both Types. Hence p + q is
rational. Now i

(

β − (p + q)/2
)

lies with all its conjugates on Ξ
(

(p − q)/2
)

.
We can appeal to the = case to complete Step (v).

Step (vi): the case where one line has twice the number of conjugates of the
other is covered by the second part of the Theorem. Suppose that d/3 of the
conjugates have real part p, and that 2d/3 have real part q. From Step (iii)
of the proof, we note that any automorphism either permutes the conjugates
with real part p, or sends them all to the other line. Take β1 a conjugate with
real part p. Applying automorphisms to

p = (β1 + β1)/2

we see that S(p) ⊆ L(p) ∪ L(q). By Remark 20, no conjugates other than
p can have real part p. Note that q itself cannot be a conjugate of p, else
applying an automorphism that maps q to p would map all the conjugates of
β on L(q) to L(p), which contradicts the assumption that twice as many have
real part q. Applying Step (iv) to S(p) (rather than to S(β)), we conclude
that p has exactly two conjugates with real part q, so p is cubic. Replacing β

by one of its conjugates on L(p), we have β = p + ir for some r. It remains
to show that r is totally real. Suppose that ϕ(r) is not real. The real part
of ϕ(p) is either p or q: suppose the former (the other case is similar). Then
ϕ(β) = ϕ(p + ir) = ϕ(p)± iϕ(r) does not have real part p, so must have real
part q, giving q − p for the real part of ±iϕ(r). But then ϕ(β) has real part
p − (q − p) = 2p − q, which is neither p nor q, a contradiction. Hence r is
totally real. �

7.6. The × case. The most difficult pair-of-lines case is when an algebraic
number α and all its conjugates lie on the pair of lines X(a, θ) for some a and
θ. Berry provides an answer that is almost complete, but as with Smyth’s
work on conics there is a degree restriction. Perhaps surprisingly, a need not
be rational; but at worst it is quadratic, provided that the degree of α is at
least 10. We note that any cubic α will lie with all its conjugates on some
X(a, θ), where a is a real conjugate.

Theorem 24. (a) Let a be a real quadratic algebraic number, with conjugate

a
′ 6= a, and let r be totally real. Define

α =
a + a

′

2
+ i

a
′ − a

2
+ r

√

i|a′ − a| .
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Then S(α) ⊆ X(a, π/4).
(b) Let a be a real quadratic algebraic number, with conjugate a

′ 6= a, and

let r be totally real. Take n ∈ N square-free such that a ∈ Q(
√

n). Take

integers A, B, K with A ≥ 0, K > 0, K square-free, and A
2
n + B

2
K = E

2

for some E ∈ N. Define

u =
A
√

n + B
√
−K

E

and

α =
a + a

′

2
+ u

a
′ − a

2
+ r

√
u2 + 1 .

Then S(α) ⊆ X(a, θ), where u = |u|e2iθ.

(c) Let a be rational, and r totally real. Then

α = a +
√

ir

lies with all its conjugates on X(a, π/4).
(d) Let a be rational, let u = u1 = e

2iθ be a reciprocal algebraic number with

just two conjugates on the unit circle (u1 and 1/u1) and all other conjugates

real (u2, 1/u2, . . . , ug, 1/ug), and let r be totally real. Then

α = a + re
iθ

√

|u2 · · ·ug|

lies with all its conjugates on X(a, θ).
(e) Let a be rational, let u = u1 = e

2iθ (0 < θ < π/2) be an even reciprocal

algebraic number with just four conjugates on the unit circle (±u1 and ±1/u1)

and all other conjugates real (±u2, ±1/u2, . . . , ±ug, ±1/ug), and let r be

totally real. Then

α = a + re
iθ
√

2 cos(θ)(u2

2
+ 1) · · · (u2

g + 1)

lies with all its conjugates on X(a, θ).
(f) Any algebraic number that lies with all its conjugates on X(a, θ) for

some a and θ, with a either rational or real quadratic, and θ ∈ (0, 2π), arises

in one of the above five ways, (a), (b), (c), (d), (e).

(g) If an algebraic number of degree at least 10 lies with all its conjugates

on X(a, θ) for some a and θ, with θ ∈ (0, 2π), then a is either rational or real

quadratic.

Proof. It is not hard to see that (a), (b), (c), (d), (e) hold. (For (d), note that
the pairs {ui, 1/ui} are permuted by any automorphism; for (e) note that the
quartets {ui,−ui, 1/ui,−1/ui} are permuted.) We shall now prove (g), and
then (f).

We assume that α has degree at least 10, and lies with all its conjugates
on X(a, θ). If the degree of α is even, then we shall list its conjugates at α1,
α1, . . . , αd, αd, where we suppose that α = α1, . . . , αd lie on one of our two
lines, with their complex conjugates on the other. We shall soon reduce to
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this case, but before we have done so we allow the possibility that α = a, and
that the remaining conjugates are α1, α1, . . . , αd, αd, where again we have
α1, . . . , αd on one of our two lines. Moreover, in both cases, we can order the
conjugates such that arg(αi − αj) = θ = − arg(αi − αj) whenever i > j.

The steps in the proof of (g) are as follows: (i) a is algebraic; (ii) a is not
one of the conjugates of α (so that the degree of α must be even); (iii) a is
totally real; (iv) a is rational or quadratic.

7.6.1. a is algebraic. Clearly we have (given that the degree is at least 4)

e
2iθ = (α1 − a)/(α1 − a) = (α2 − a)/(α2 − a) ,

and rearranging gives

a =
α1α2 − α1α2

α1 − α1 − α2 + α2

, (18)

which reveals that a is algebraic.

7.6.2. α and a are not conjugate (and hence the degree of α is even). Suppose
that α = a, so that the degree of α is 2d + 1. Let σ be an automorphism
that sends α to α1, and suppose that σ

−1(α) = αt (the case σ
−1(α) = αt is

entirely similar). We thus have d − 1 equations of the shape

(αt − α)(αj − α) = (αt − α)(αj − α) , 1 ≤ j ≤ d , j 6= t .

Applying σ gives d − 1 equations

(α − α1)
(

σ(αj) − α1

)

= (α′ − α1)
(

σ(αj) − α1

)

, (19)

where α
′ = σ(αt). This implies that

σ(αj) − α1

σ(αj) − α1

is constant (j 6= t), and in particular it has constant argument. If α
′ is one of

the αi, then this constant argument is 0; yet taking j such that one of αj, αj

is α1, we get that one of the numerator or denominator of (19) has argument
±π/2 and the other does not, giving a contradiction. If α

′ is one of the αj,
then considering arguments in (19) we see that none of the σ(αj) lie on the
same line as α1, and hence at least two of the σ(αj) do, giving at least two
of the αj − α1 with the same argument, and hence these αj on the same line
as α1, a contradiction. This last part requires d − 1 ≥ 2, and hence α has
degree at least 7. Berry [1] gives a further argument to exclude degree 5, but
since the main Theorem allows us to assume degree at least 10 we need not
pursue this more detailed result.
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7.6.3. a is totally real. We have that α has even degree 2d, with d ≥ 5, and
it is in proving that a is totally real that we shall use this lower bound on the
degree. Let Ω = {α1, . . . , αd}, the set of conjugates that lie on the same line
as α = α1. Let us call this line L: the other line is L. Let ω be the mean of
the elements of Ω:

ω =
1

d

d
∑

i=1

αi .

Note that if ω is real, then ω = a, and then a = (ω + ω)/2 is preserved by
all automorphisms, so is rational. We are therefore reduced to the case that ω

is not real. We suppose that a is not rational, and let τ be any automorphism
that moves a.

First we observe that if τ maps three elements αi, αj, αk of Ω to the same
line, then τ(αi), τ(αj), τ(αk) are collinear. For

τ(e2iθ) =
τ(αi) − τ(αj)

τ(αi) − τ(αj)
=

τ(αi) − τ(αk)

τ(αi) − τ(αk)
=

τ(αj) − τ(αk)

τ(αj) − τ(αk)
,

and since at least two of τ(αi), τ(αj), τ(αk) lie on the same line, consideration
of arguments shows that the third does too.

Next we observe that if σ is an automorphism that maps a pair αi, αi to Ω,
or to Ω, then σ(a) = a. We use d > 4 to note that at least three elements of
σ(Ω) are collinear, and we may suppose (by relabelling if necessary) that they
are all in Ω, and that σ(αi) is one of them (if both αi and αi map to Ω then
there must be some other complex conjugate pair that maps to Ω). Let αj,
αk be two others that are mapped to Ω by σ; by our previous observation the
complex conjugates of αi, αj, αk are collinear and hence in Ω, and applying
σ to

e
2iθ =

αi − α)

αi − αj

=
αi − αk

αi − αk

=
αj − αk

αj − αk

gives σ(e2iθ) ∈ R. But now applying σ to

e
2iθ =

αi − a

αi − a
,

we see that σ(a) lies on L. The hypothesis on σ is symmetric in L and L, so
σ(a) must also lie on L, and hence σ(a) = a.

It follows that for j = 1, . . . , d, our automorphism τ (which moves a) must
map one of αj, αj to Ω and the other to Ω. We deduce that

τ(Ω) = τ(Ω) . (20)

Next we observe that |τ(e2iθ)| = 1. For any i and j we have

τ(e2iθ) =
τ(αi) − τ(αj)

τ(αi) − τ(αj)
. (21)



234 Conjugates on conics

Since τ(Ω) = τ(Ω), we have

max
i,j

|τ(αi) − τ(αj)| = max
k,l

|τ(αk) − τ(αl)| ,

and taking i and j to maximise first the numerator and then the denominator
in (21) we deduce both |τ(e2iθ)| ≥ 1 and |τ(e2iθ)| ≤ 1.

Finally we conclude that a is totally real. For averaging (20) gives

τ(ω) = τ(ω),

and applying τ to the average of

e
2iθ =

αj − a

αj − a

then gives

τ(e2iθ) =
τ(ω) − τ(a)

τ(ω) − τ(a)
,

and since |τ(e2iθ)| = 1 we have that τ(a) is real.

7.6.4. a is rational or quadratic. We preserve all the above notation and con-
ventions. Suppose that ϕ is an automorphism for which ϕ(a) = a

′ 6= a. We
show first that for no i and j (perhaps equal) does ϕ({αi, αi}) = {αj, αj}.
For suppose such i and j exist. Replacing ϕ by ϕ if necessary, we can suppose
that ϕ(αi) = αj. Recalling

e
2iθ =

αi − a

αi − a
=

αi − αs

αi − αs

(for all s 6= i) we have

ϕ(e2iθ) =
αj − a

′

αj − a′
=

αj − ϕ(αs)

αj − ϕ(αs)

for all s 6= i.
Next we deduce that ϕ(αs) ∈ Ω for all s 6= i. For if not, say with ϕ(αs) = αt,

we would have (from an earlier argument) that ϕ(αs) ∈ Ω. Now if ϕ(αs) 6=
ϕ(αs), then using |ϕ(e2iθ)| = 1 we would get

|αj − αs| = |αj − αm|
for some m 6= s, giving αs + αm = 2αj, contradicting Remark 20. Thus

ϕ(αs) = ϕ(αs), and hence

αj − a
′

αj − a′
=

αt − a
′

αt − a′
,

giving a
′ = a (compare (18), with 1, 2 replaced by j, t).

Since ϕ(αs) ∈ Ω for all s 6= i, we must have ϕ(αs) ∈ Ω for all s 6= i.

As above, we can never have ϕ(αs) = ϕ(αs) for s 6= i. Hence there is a
permutation r 7→ r

∗ of {1, . . . , d}\{j} that has no fixed points, such that

|αr − a
′| = |αr − a

′| = |αr∗ − a
′| = |αr∗ − a

′| ,
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and hence

αr + αr∗ = 2p , (22)

for all r 6= j, where p is on L such that the angle apa
′ is π/2. Moreover, there

is therefore no conjugate α
′ of α such that αj + α

′ = 2p, as all conjugates
other that αj and αj have been paired up by (22).

We are trying to show that for no i and j (perhaps equal) does ϕ({αi, αi}) =
{αj, αj}, and we are now reduced to the case where at most one such pair
(i, j) exists, and with the permutation r 7→ r

∗ pairing up all the conjugates of
α other than αj and αj via (22). Choose r 6= j, and choose an automorphism
τ such that τ(αr) = αj. Since αj + α

′ never equals 2p, for any conjugate α
′

of α, we have

2τ(p) = τ(αr) + τ(αr∗) = αj + α
′ 6= 2p ,

(with α
′ = τ(αr∗)), and so τ(p) 6= p. We split into two cases, and produce a

contradiction in each: (A) α
′ ∈ Ω; (B) α

′ ∈ Ω.
First, then, suppose that α

′ ∈ Ω. Then τ(p) = (αj + α
′)/2 ∈ L. Using

τ(p) = (τ(αs) + τ(αs∗))/2 for s 6= j, we have that τ(αs) ∈ L for all s 6= j.
Take some s 6= j, and put τ(αs) = αa, τ(αs∗) = αb. Then

2τ(p) = αj + α
′ = αa + αb .

Now take m such that τ(αm) is one of αa∗ or αb∗ , say αa∗. Then

2τ(p) = τ(αm) + τ(αm∗) = αa∗ + α
′′
,

say. Thus we have both

αa + αb = αa∗ + α
′′

and

αa + αa∗ = αb + αb∗ (= 2p) .

Adding these gives 2αa = α
′′ + αb∗ , contradicting Remark 20.

Next we treat the case α
′ ∈ Ω. Then τ(p) = (αj + α

′)/2 can be on neither
L nor L. Choose s 6= {j, r}. Since αs + αs∗ = 2p, and τ(p) is not on L or
L, we must have one of τ(αs), τ(αs∗) on L and the other on L. Suppose the
former (the other case goes through in the same way). Then from

2τ(p) = αj + α
′ = τ(αs) + τ(αs∗)

we get

αj − τ(αs) = τ(αs∗) − α
′
,

so the line through αj and τ
(

α(s)
)

(which is L) is parallel to that through α
′

and τ(αs∗) (which is L
′), which contradicts their intersection at a.

To sum up, we have shown that for no i and j (perhaps equal) does
ϕ({αi, αi}) = {αj, αj}. It follows that there is a permutation r 7→ r

∗ of
{1, . . . , d} with no fixed points, such that

|αr − a
′| = |αr∗ − a

′|
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for all r. Moreover, the formula αr + αr∗ = 2p now reads

αr + αr∗ = 2ω , (23)

for all r.
We are inching towards the conclusion that a is quadratic (given the ex-

istence of ϕ such that ϕ(a) = a
′ 6= a). We now show that ω, the average

of the conjugates on L, is quadratic (or rational). Let τ be any automor-
phism. Suppose that one of τ(α1), τ(α1∗) is in Ω and the other is in Ω.
Then from (23), τ(ω) lies neither on L nor on L, and from (23) again one
of τ(α2), τ(α2∗) lies on L and the other on L. One could then rearrange
τ(α1) + τ(α1∗) = τ(α2) + τ(α2∗) to show that L and L are parallel, which
is nonsense. We conclude that both τ(α1) and τ(α1∗) lie on the same line,
L or L, and hence so does ω. Then, using (23) yet again, we conclude that
τ either maps Ω to Ω, or maps Ω to Ω. Thus τ(ω) is one of ω or ω, which
implies that ω is quadratic (or rational). We also conclude that (with a

′ 6= a)
any automorphism maps Ω either to itself or to Ω.

We can now show that a is quadratic, and that e
2iθ either equals i, or is

quartic, in which case its conjugates are ±e
±2iθ. Moreover, in this quartic

case, the automorphisms that send e
2iθ to −e

±2iθ are precisely those that
send a to a

′. We use the various formulas

e
2iθ =

αr − a

αr − a
=

αr − αs

αr − αs

,

a =
αrαs − αrαs

αr − αr − αs + αs

.

Apply an arbitrary automorphism τ to the first of these. Suppose first that
τ : Ω → Ω. Then we have (for suitable choices of r and s in the above, and
for some a and b)

τ(e2iθ) =
α1 − αd

αa − αb

=
α1 − τ(a)

αa − τ(a)
=

αd − τ(a)

αb − τ(a)
=

ω − τ(a)

ω − τ(a)
.

From the first and the last of the above string of equal numbers, we have
|τ(e2iθ)| = 1. Since our ordering of the indices makes |α1 − αd| maximal
amongst all |αr − αs|, we must therefore have either α1 = αa, αd = αb, or
α1 = αb, αd = αa. The former gives τ(a) = a and τ(e2iθ) = e

2iθ. The latter
gives

τ(a) =
α1α1 − αdαd

α1 + α1 − αd − αd

and τ(e2iθ) = −e
2iθ.

Next suppose that τ : Ω → Ω. A similar argument gives the same two
possibilities for τ(a), now with τ(e2iθ) = ±e

−2iθ.
With just two possibilities for τ(a) we conclude that a is quadratic, and we

see also that e
2iθ is at worst quartic, and that in the quartic case its conjugates

are of the form claimed above.
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This concludes the proof of (g), and we now move to (f), dealing first with
the case where a is real quadratic, and then rational.

7.6.5. The quadratic case. We now suppose that α lies with all its conjugates
on X(a, θ), where a is real quadratic, with conjugate a

′ 6= a. We note that
either θ = π/4 or both a and ω are in the field Q(e2iθ). For suppose an
automorphism τ maps ω to ω and fixes e

2iθ. Choose r and s such that
τ(αr) = α1 and τ(αs) = αd. Then applying τ to

e
2iθ =

αr − αs

αr − αs

gives

e
2iθ =

α1 − αd

αa − αb

,

say, and to achieve modulus 1 we must have {a, b} = {1, d}. This gives
e
2iθ = ±e

−2iθ, hence θ = π/2 or θ = π/4. The former is the + case, so we
conclude that unless θ = π/4 we must have ω ∈ Q(e2iθ). Now, with θ 6= π/4,
we choose any automorphism σ that fixes e

2iθ (and hence fixes ω). Then

e
2iθ =

ω − a

ω − a
=

ω − σ(a)

ω − σ(a)
,

and hence σ(a) = a. Thus we have a ∈ Q(e2iθ) too.
Next we establish the formula

ω =
a + a

′

2
+

a − a
′

2
e
2iθ

.

From the final part of the proof of (g), which required only that a was totally
real, we know that there is an automorphism τ that fixes ω, maps a to a

′ and
maps e

2iθ to −e
2iθ. Applying this to e

2iθ = (ω − a)/(ω − a) and eliminating
ω gives the stated formula for ω.

Next we show that for some integers A, B, E, K, n, with A ≥ 0, B 6=
0, K > 0, n > 1, n squarefree, K squarefree (perhaps equal to 1), and
A

2
n + B

2
K = E

2 we have

e
2iθ =

A
√

n + B
√
−K

E
.

Since a is real quadratic, a ∈ Q(
√

n) for some squarefree integer n > 1.
If θ = π/4, we can take A = 0, B = E = K = 1. Otherwise, e

2iθ lies
in the quartic extension Q(e2iθ) = Q

(√
n, 2i sin(θ)

)

, an imaginary quadratic

extension of Q(
√

n), and hence e
2iθ is of the stated form. Since e

2iθ has
modulus 1, we must have A

2
n + B

2
K = E

2.
Now suppose that θ = π/4 (this leads to case(a)). Since α and ω are both

on L, we can write

α = ω + r

√

i|a′ − a|
for some real number r, and indeed we see that r is algebraic. Recalling
ω = (a + a

′)/2 + i(a − a
′)/2 (in this case), we see that the effect of any
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automorphism τ on ω is determined by its effect on a and i. With a being
mapped to a or a

′, and i being mapped to ±i, there are four cases to consider.
Recalling also that τ(ω) = ω if and only if τ(α) is on L, we check that in all
cases τ(r) is real. Thus we are in case (a) of the Theorem.

We now deal with θ 6= π/4. We have seen that e
2iθ is of the form stated in

part (b) of the Theorem. Again since α and ω both lie on L we have

α = ω + r

√

2 cos(θ)e2iθ

for some real number r, which is algebraic (since e
2iθ is). Again, considering

all possibilities for the images of a and e
2iθ, and using

ω = (a + a
′)/2 + e

2iθ(a − a
′)/2,

we check that all conjugates of r are real. Thus we are in case (b) of the
Theorem.

7.6.6. The rational case. To complete the proof of part (f), we need to treat
the case a ∈ Q. We can simplify matters greatly by translating to achieve
a = 0. We put u = e

2iθ = αr/αr (for any r between 1 and d). Observing that
u and 1/u = u are conjugates, the minimal polynomial of u is reciprocal.

First we show that the non-real conjugates of u are among ±u
±1. Suppose

that |τ(u)| > 1 for some automorphism τ . Take s with |αs| maximal (then
s is either 1 or d, and perhaps |α1| = |αd|. Then since τ(u) = τ(αr)/τ(αr)
for all r, we must have both τ(u) = αs/α

′ and τ(u) = αs/α
′′ for some α

′

and α
′′ conjugates of α. Now τ(u) has argument ±2θ, or π ± 2θ, or 0, or π.

If the argument is 2θ or π + 2θ, then α
′′ has argument −3θ or π − 3θ, and

the only solution with θ ∈ (0, π/2) is θ = π/4, giving u = i, contradicting
|τ(u)| > 1. Similarly we can exclude arguments −2θ or π−2θ for τ(u). Hence
τ(u) is real. Since conjugates of u come in reciprocal pairs, we have also that
if |τ(u)| < 1 then τ(u) is real. There remains the case |τ(u)| = 1, with u not
real. Then τ(u) is one of α1/α1, α1/αd, α1/α1, α1/αd, and the cases that mix
α1 and αd occur only if α1 = −αd. We conclude that τ(u) is one of u, −u,
1/u, −1/u, as claimed.

We may suppose that α is on L. We put u = u1 = e
2iθ. From the above

discussion, we can split into three cases: (i) u = i; (ii) u has conjugates
u
±1

i for 1 ≤ i ≤ g, with u2, . . . , ug all real; (iii) u has conjugates ±u
±1

i for
1 ≤ i ≤ g, with u2, . . . , ug all real. In (ii) and (iii) we allow g = 1.

First, then, consider the case u = i. Let r = α
2
/i. Then certainly r is real.

For any automorphism σ, the argument of σ(α) is one of ±π/4 or π ± π/4,
and hence σ(r) is always real. Thus we are in case (c) of the Theorem.

Next suppose that u has conjugates u
±1

i for 1 ≤ i ≤ g, with u2, . . . , ug all
real. Define r = r(u2, . . . , ug) by

α = re
iθ
√

|u2 · · ·ug| . (24)
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Then certainly r is real, but perhaps not totally real. Let τ2 be an automor-
phism satisfying τ2(u2) = u. Then τ2(α) = ±τ2(r)e

iθ
√

|u2 · · ·ug|. If τ2(r) is
not real, then since τ2(α) lies on X(0, θ), the argument of ±τ2(r) must be
−2θ: in this case, if we replace u2 by 1/u2, then the new r given by (24) will
have τ2(r) real (and now we have τ2(u2) = 1/u). Similarly we can, after re-
placing certain of the ui by 1/ui, find automorphisms τi (2 ≤ i ≤ g) such that
τi(ui) = u

±1, and such that each τi(r) is real. Now applying τi, then complex
conjugation, then τ

−1

i , we see that α is conjugate to α/|ui| for 2 ≤ i ≤ g.
Now let σ be any automorphism. We aim to show that σ(r) is real. Take t

between 1 and g such that σ(ut) = u
±1. Since σ(r) is real if and only if σ(r)

is real, we may suppose (replacing σ by σ if need be) that σ(ut) = u. If t ≥ 2,
then applying σ to both α and its conjugate α/|ut|, we see that both σ(α)
and ±σ(α)/u1 lie on X(0, θ). The same conclusion holds if t = 1, applying
σ to both α and α = α/u1. If σ(r) were not real, this would be impossible.
Hence r is totally real, and we are in case (d) of the Theorem.

The case (iii) is entirely similar, leading to case (e) of the Theorem. �

8. Concluding remarks and questions

8.1. Integrality. Moving from algebraic numbers to algebraic integers usu-
ally presents a serious challenge, and much less is known in general. Even
the case of conjugate sets in real intervals is not completely understood. Is
there a real interval of length 4 with non-integral endpoints that contains only
finitely many conjugate sets of algebraic integers? Is there such an interval
that contains infinitely many?

8.2. Lowering the degree bounds. Can any of the degree bounds be re-
duced? For parabolas, ellipses, hyperbolas, and pairs of lines, the Theorems
include a lower bound on the degree. In all cases, this bound is an artefact
of the particular proof, and perhaps an alternative method could lower the
bound.

8.3. Degree greater than 2.

8.3.1. More than two lines. A natural generalisation of the two-line result is
to ask which algebraic numbers lie with all their conjugates on the union of
d lines, for some d > 2.

8.3.2. Higher degree curves. One might define the geometric degree of an
algebraic number α to be the minimal degree of a polynomial f(x, y) with
integer coefficients such that all the conjugates of α are of the form x+iy with
x, y real and f(x, y) = 0. The algebraic numbers considered in this survey
have geometric degree 1 or 2. What can be said about algebraic numbers of
higher degree?
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ON POLYNOMIAL ERGODIC AVERAGES AND SQUARE

FUNCTIONS

RADHAKRISHNAN NAIR

Abstract. Let φ1, . . . , φd be non-constant polynomials mapping the nat-

ural numbers to themselves. Let T1, . . . , Td be commuting measure-

preserving transformations of a probability space (X, β, µ). Let

ANf(x) =
1

N

N
∑

n=1

f
(

T
φ1(n)

1
. . . T

φd(n)

d
x
)

, (N = 1, 2, . . . )

denote the corresponding ergodic averages constructed for an integrable

function f defined on (X, β, µ). Also let

Vqf(x) =

(

∞

∑

N=1

|AN+1f(x) − ANf(x)|q
)

1

q

,

for q ≥ 1. We show that for p, q > 1 there exists Cp,q > 0 such that

||Vqf(x)||p ≤ Cp,q ||f ||p .

We also give an example to show that this consequence is not possible for

q = 1 even if f is essentially bounded. Finally we show that if the sequence

of natural numbers (Nk)∞
k=1

satisfies 1 < a ≤ Nk+1

Nk
≤ b < ∞, for certain

a, b and

Sf(x) =

(

∞

∑

k=1

|ANk+1
f(x) − ANk

f(x)|2
)

1

2

,

then there exists C > 0 such that

||Sf ||2 ≤ C||f ||2 .

Here, of course, ||f ||p denotes the Lp(X, β, µ) norm of f .

1. Introduction

Suppose that (X, β, µ) is a probability space and that, for i = 1, 2, . . . , d,
Ti : X → X are commuting maps which are measure preserving, that is

µ(T−1
A) = µ(A)

for each set A in the σ-algebra β. Here for a set A we have used T
−1
A

to denote {x : Tx ∈ A}. Suppose also that φ1, . . . , φd are non-constant

2000 Mathematics Subject Classification. Primary: 28D05; Secondary: 37A25.

Key words and phrases. p-norm operator, variation function, polynomial ergodic aver-

ages, square functions.
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polynomials mapping the natural numbers to themselves. For a measurable
function f defined on X and for natural numbers (N = 1, 2, . . . ) set

ANf(x) =
1

N

N−1
∑

n=0

f

(

T
φ1(n)

1
. . . T

φd(n)

d x

)

. (1.1)

Also for q > 1 set

Vqf(x) =

(

∑

N≥1

|AN+1f(x) − ANf(x)|q

)
1

q

. (1.2)

Let Lp = L
p(X, β, µ) denote the space of equivalence classes of functions dif-

fering only on sets of measure zero, with norm ||f ||p = (
∫

X
|f |pdµ)

1

p . We have
the following theorems, the first of which answers a question of M. Weber,
put to the author personally.

Theorem 1. Suppose that f ∈ L
p for p > 1, that

(

ANf(x)
)∞

N=1
is defined as

in (1.1) and that Vqf is defined in (1.2). Then for q > 1 there exist constants

Cp,q > 0 such that

||Vqf ||p ≤ Cp,q||f ||p .

What happens when p = 1 is unknown to the author. We call the dynamical
system (X, β, µ, T1, . . . Td) good if for every integrable function f onX we have

lim
N→∞

ANf(x) =

∫

X

fdµ µ a.e. ,

where the limit exists. There is a spectral characterisation of this in [4]
which provides a means of obtaining good dynamical systems, for instance as
automorphisms of compact abelian groups. We have the following result.

Theorem 2. Suppose that (X, β, T1, . . . Td) is good and that the measure space

(X, β, µ) is non-atomic. Then for any non-constant function f on (X, β, µ)
we have

V1f(x) = +∞ µ a.e. .

Theorem 3. Suppose that f ∈ L
2(X, β, µ), that the sequence of natural num-

bers (Nk)
∞
k=1

satisfies

1 < a ≤
Nk+1

Nk

≤ b <∞

for certain a, b, and that

Sf(x) =

(

∞
∑

k=1

|ANk+1
f(x) − ANk

f(x)|2

)
1

2

.

Then there exists C > 0 such that

||Sf ||2 ≤ C||f ||2 .
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For similar results when d = 1 see [5]. By a simple change of coordinates
it is clear that without loss of generality we may, as we do, choose φi(x) = x

i

(i = 1, 2, . . . ). These results, and indeed some of their proofs, are motivated
by the parallels between polynomial ergodic averages and martingales. In
particular, if (Yi)

∞
i=1

is a real valued integrable martingale, set

SN =
1

N

N
∑

i=1

Yi (N = 1, 2, . . . ) .

Then there exist C1, C2 > 0 such that

C1||Y1||2 ≤ ||2

(

∞
∑

N=1

|SN+1 − SN |
2

)
1

2

||2 ≤ C2||Y1||2 .

This is known as the Burkholder-Gundy-Silverstinov inequality. In the special
case where (Yi)

∞
i=1

is a sequence of independent identically distributed random
variables the right hand inequality is implied by Theorem 1. Henceforth the
letter C, possibly with subscripts, refers to a positive constant, not necessarily
the same at each occurrence.

2. Proof of Theorem 1

Notice that for q > 1,

AN+1f(x) − ANf(x) =
f

(

T
N+1

1
. . . T

(N+1)
d

d x− ANf(x)
)

N + 1
.

Using the `q(Z) triangle inequality we have

Vqf(x) ≤

(

∑

N≥1

(∣

∣

∣

∣

∣

f(TN+1

1
. . . T

(N+1)
d

d x)

N + 1

∣

∣

∣

∣

∣

)q) 1

q

+

(

∑

N≥1

(

|ANf(x)|

N + 1

)q
)

1

q

= A(1)f(x) + A(2)f(x) , say. (2.1)

We need the following lemma.

Lemma 4. Suppose that φ1, . . . , φd, T1, . . . , Td and (X, β, µ) are as in the

statement of Theorem 1. Let

Mf(x) = sup
N≥1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

f(T
φ1(n)

1
. . . T

φd(n)

d x)

∣

∣

∣

∣

∣

,

where f ∈ L
p(X, β, µ) with p > 1. Then there exists Cp > 0 such that

||Mf ||p ≤ Cp||f ||p .
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In the special case where φ(n) = n
d, φ1 = φ and φ2 ≡ φ3 ≡ · · · ≡ 1, this

is proved in [2]. It is stated in [3], without detailed proof, that Lemma 4
holds in full generality, proved using the same method as in [1]. In the case
p = 2, this lemma appears in [1]. As a consequence of Lemma 4, because
|ANf(x)| ≤Mf(x) for all N ≥ 1, we see that there exists Cp,q > 0 such that

||A(2)f ||p ≤ Cp,q||f ||p ,

hence Theorem 1 is proved if we can prove the following lemma:

Lemma 5. For A(1)f defined by (2.1), if f ∈ L
p(X, β, µ) with p > 1, then

||A(1)f ||p ≤ Cp,q||f ||p .

Proof. Let χA denote the characteristic function of the set A, that is

χA(x) =

{

1 if x ∈ A ,

0 if x /∈ A .

Let η > 0 and set

an(x) = |f(T n
1
. . . T

nd

d x)|χ
[x∈X:f(Tn

1
...Tnd

d
x)≤η(n+1)]

(x)

and
bn(x) = |f(T n

1
. . . T

nd

d x)|χ
[x∈X:f(Tn

1
...Tnd

d
x)>η(n+1)]

(x) .

Observe that in the notation for (an)n≥1 and (bn)n≥ 1, we suppress mention
of η. This is because its specific value plays no role in what follows. Note
that

|f(T n
1
. . . T

nd

d x)| = an(x) + bn(x) .

This means that by Minkowski’s inequality,

A(1)f(x) ≤ B1f(x) +B2f(x) ,

where

B1f(x) =

(

∑

n≥0

(

an(x)

n + 1

)q
)

1

q

and

B2f(x) =

(

∑

n≥0

(

bn(x)

n + 1

)q
) 1

q

.

This tells us that
||A(1)f ||p ≤ ||B1f ||p + ||B2f ||p .

Hence Lemma 5 is proved if we show that there exists Cp > 0 such that

||Bif ||p ≤ Cp,q||f ||p , (2.2)

for each i = 1, 2. We work with weak (1.1) estimates. That is we show that

µ({x ∈ X : Bif(x) ≥ λ}) ≤ Cq

∫

X
|f |dµ

λ
, (2.3)
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and that

||Bif ||∞ ≤ C∞,q||f ||∞ . (2.4)

The last inequality (2.4) for p = ∞ is self evident from the definition of
(

ak(x)
)∞

k=1
and

(

bk(x)
)∞

k=1
. By the Marcinkiewicz interpolation theorem, the

bound (2.2) follows from (2.3). We first prove (2.3) with i = 1. We have

µ
(

{x ∈ X : B1f(x) > λ
2
}
)

≤
Cq

λq

∫

X

∞
∑

n=0

(

an(x)

n + 1

)q

dµ

= Cqλ
−q
∑

n≥0

(

1

n + 1

)q ∫

X

an(x)
qdµ .

Now
∫

X

a
q
n(x)dµ ≤ C

∫ ∞

0

y
q−1

µ({x ∈ X : an(x) > y})dy .

Hence

µ
(

{x ∈ X : B1f(x) > λ
2
}
)

≤
C

λq

∑

n≥0

(

1

n+ 1

)q ∫ ∞

0

y
q−1

µ ({x ∈ X : an(x) > y}) dy .

Now from the definition of an(x) and the fact that the transformations T1, . . . , Td

preserve µ, this is

≤
Cq

λq

∑

n≥0

(

1

n + 1

)q ∫ ∞

0

y
q−1

µ({x ∈ X : |f(x)| > y})dy ,

which is

=
Cq

λq

∫ ∞

0





∑

n≥[
y

λ
]

(

1

n + 1

)q

y
q−1

µ({x ∈ X : |f(x)| > y})



dy ,

and hence is

≤
Cq

λq

∫ ∞

0

(

y
q−1

(

λ

y

)q−1

µ({x ∈ X : |f(x)| > y})

)

dy ,

which is

=
Cq

λ

∫

X

|f |dµ .
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Because q > 1, this is finite and we have shown (2.3) with i = 1. We now
show (2.3) with i = 2. Here

µ({B2f(x) > 0}) ≤
∑

n≥0

µ({x : bn(x) > 0})

≤
∑

n≥0

µ({x : |f(x)| > λ(n+ 1)})

≤
1

λ

∫

X

|f |dµ ,

and so Theorem 1 is proved.

3. Proof of Theorem 2

For a function f in L1(µ) and δ > 0, let

E(f, δ) =

{

x ∈ X :

∣

∣

∣

∣

f(x) −

∫

X

fdµ

∣

∣

∣

∣

> δ

}

.

Because (X, β, T1, . . . , Td) is good, given δ0 > 0 and f ∈ L
1(µ), for almost all

x there exists N0(x) such that if N > N0(x),
∣

∣

∣

∣

ANf(x) −

∫

X

f(x)dµ

∣

∣

∣

∣

<
δ0

2
.

Pick f to be non-constant and such that there exists δ0 > 0 with

µ(E(f, δ0)) > 0.

Then if x ∈ E(f, δ0) and N > N0(x), using the triangle inequality, we note
that

|AN+1f(x) − ANf(x)| =
1

N + 1

∣

∣

∣
AN+1f(x) − f

(

T
N+1

1
. . . T

(N+1)
d

d x

)∣

∣

∣

≥
1

N + 1

∣

∣

∣

∣

∫

X

fdµ− f

(

T
N+1

1
. . . T

(N+1)
d

d x

)

∣

∣

∣

∣

−
1

N + 1

∣

∣

∣

∣

AN+1f(x) −

∫

X

fdµ

∣

∣

∣

∣

.

Thus for x in E(f, δ0),

|AN+1f(x) − ANf(x)| ≥
δ0

N + 1
−

δ0

2(N + 1)
=

δ0

2(N + 1)
.

This means that

V1f(x) ≥
∑

N≥N0(x)

δ0

2(N + 1)
χE(f,δ0)(T

N+1

1
. . . T

(N+1)
d

d x)

≥
δ0

2







∑

l≥N0(x)

1

l + 2







1

l + 1

l
∑

N=N0(x)

χE(f,δ0)(T
N+1

1
. . . T

(N+1)
d

d x)













,
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which for suitably large N0(x) is

≥
δ

2
(
µ(E(f, δ0))

2
)
∑

l≥N0(x)

1

l + 1

= ∞ ,

as required.

4. Proof of Theorem 3

We begin with some number theoretic preliminaries. Suppose that

ψ(x) = adx
d + · · ·+ a1x

for integers ai(i = 1, 2, . . . , d) and let

S(q, a1, . . . , ad) =
1

q
S(ψ | q) (4.1)

where

S(ψ | q) =

q−1
∑

r=0

e
2πiψ(r)q−1

.

For β = (β1, . . . , βd) in Rd let

Vn(β) =
1

n

∫ n

0

e
2πi(βdx

d
+···+β1x)dx . (4.2)

We have the following lemmas.

Lemma 6 ([6, p. 116]). If Vn(β) is defined by (4.2), then

|1 − VN(β)| ≤ C

d
∑

j=1

|βj|

and

|VN(β)| ≤ C

[

1 +
d
∑

j=1

|βj|N
j

]− 1

d

.

Lemma 7. Let S(q, a1, . . . , ad) be defined by (4.1). Then there exist δ0 > 0,
and Cδ0 > 0 such that

|S(q, a1, . . . , ad)| ≤
Cδ0

qδ0
.

In fact Lemma 7 is true for any δ0 in (0, 1

d
).

Proof. Let (q, a) denote the highest common factor of the integers q and
a1, a2, . . . , ad. Then under the assumption that (q, a) = 1, a proof of Lemma
7 appears in [6, p. 112]. To remove this assumption note that

S(q, a1, . . . , ad) =
1

q
S

(

ψ
′

∣

∣

∣

∣

q

(q, a)

)

,
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where

ψ(x) = bdx
d + · · ·+ b1x ,

with bi = ai

(q,a)
(i = 1, 2, . . . , d). Now because

(

q

(q,a)
,b
)

= 1,
∣

∣

∣

∣

S

(

q

(q, a)
, b1, . . . , bd

)∣

∣

∣

∣

≤
Cδ

(

q

(q,a)

)δ0
.

Also, using the periodicity properties of the complex exponential function,

S(ψ | q) = (q, a)S

(

ψ
′

∣

∣

∣

∣

(

q

(q, a)

))

.

Putting this all together gives

|S(q, a1, . . . , ad)| ≤
Cδ0(q, a)1+δ0

qδ0
.

Noting that (q, a) ≤ mini=1,2,...,d(|ai|) completes the proof. �

Lemma 8 ([7, p. 198]). Suppose F : [X, Y ] → C, F is twice differentiable

and the derivative of F is monotone on [X, Y ] and of constant sign. Suppose

that 0 < H < 1 and that |F ′(x)| ≤ H in [X, Y ]. Then

∑

X<k≤Y

e
2πiF (k) =

∫ Y

X

e
2πiF (x)dx +O

(

3 −
2H

1 −H

)

.

For δ > 0 set

MN (θ) = {(α1, . . . , αd) ∈ [0, 1)d : |αi − θi| < N
−i+δ(1 ≤ i ≤ d)} ,

where θ = (θ1, . . . , θd) for rationals θi = ai

qi
(i = 1, 2, . . . , d). In addition let

q = (q1, . . . , qd) denote the highest common factor of the integers q1, . . . , qd.

Lemma 9 ([6, p. 116]). Suppose that α ∈ MN (θ), that δ > 0 and that

q ≤ N
δ. Also suppose that

K̂N(α) =
1

N

N
∑

n=1

e
2πi(α1n+···+αdn

d
)
.

Then

K̂N(α) =
S(q, a1, . . . , ad)

q

∫ N

0

e(β1x + · · ·+ βdx
d)dx

+O
(

r(1 + |β1|N + · · ·+ |βd|N
d)
)

.

In particular, if α = θ + β where θi = ai

qi
,

K̂N (α) = S(q, a1, . . . , ad)VN(β) +O(N− 1

2 ) .
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Proof. The first claim of the theorem is quoted from the given reference. For
the second let θj =

aj

qj
, αj = θj + βj and |βj| < N

−j+δ. Writing n = qs + r,

where 0 ≤ s <
N
q

and r = 1, 2, . . . , q − 1, for each j = 1, 2, . . . , d, one has

αjn
j = (θj + βj)(qs+ r)j ∈ Z + θjr

j + βjq
j
s
j +O(N−1+2δ) .

Since q < N
δ,

K̂N(α) =

{

1

q

q−1
∑

r=1

e
2πi(rθ1+···+rdθd)

}







q

N

N

q
∑

s=0

e
2πi(β1sq+...βds

dqd
)







+O(N− 1

2 ) .

Using Lemma 8 we may replace

q

N

N

q
∑

s=0

e
2πi(β1sq+...βds

dqd
)

by VN(β) to obtain Lemma 9. �

We need the following inequality a form of which was stated by J. Bourgain
[1, p. 66]. I have not been able to understand his proof, however; so for
completeness a different proof is presented here. I thank R.C. Vaughan for
assistance with this.

Lemma 10. There exists δ′ > 0 and C > 0 such that if α is not in MN(θ)
for any θ with q < N

δ, we have
∣

∣

∣
K̂N(α)

∣

∣

∣
≤

C

N δ′
.

Proof. Let α ∈ [0, 1)d\MN . As a consequence of Dirichlet’s theorem on dio-
phantine approximation, for all i ≤ d we can choose bi and qi with (bi, qi) = 1,

qi ≤ N
i− 1

3 and |αi −
bi
qi
| ≤ q

−1

i N
1

3
−i. Suppose first for some i that we have

qi ≥ N
1

3d . Then by [7, Theorems 5.3, p. 68]

K̂N(α) ≤ N
1−σ(d)

d ,

where σ(d) ∼ 1

cd2 log d
. Secondly, suppose that qi < N

1

3d for all i. Then

(q1, . . . , qd) < N
1

3 . Now, by Lemma 9,

K̂N(α) =
S(q,b)

q

∫ N

0

e(β1x+· · ·+βdx
d)dx+O

(

q(1 + |β1|N + · · ·+ |βd|N
d)
)

,

where βi = αi = bi
qi

, S(q,b′) =
∑q

x=1
e

(

b′
1
x+···+bdx

d

q

)

and
b′
i

q
= bi

qi
. The

error term is � N
1

3N
1

3 = N
2

3 < N
1−σ(d)

d . By Lemma 7 and the following
remark S(q,b) � q

1− 1

d
+ε, for any ε > 0. This means that the main term is

� Nq
− 1

d
+ε. Since we have α /∈MN we have q > N

δ. Hence the main term is
� N

1−δ( 1

d
+ε). �
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Let ζ be a smooth function defined on R with support contained in [− 1

5
,

1

5
]

and equal to 1 on [− 1

10
,

1

10
]. Let

Rs =

{(

a1

q1
, . . . ,

ad

qd

)

∈ Qd : q = (q1, . . . , qd) ∈ [2s, 2s+1)

}

,

where we recall (q1, . . . , qd) denotes the highest common factor of the integers

q1, . . . , qd. Then for α = (α1, . . . , αd) ∈ [0, 1)d and θ = (a1
q1
, . . . ,

ad

qd
) we set

|β| := max(|β1|, . . . , |βd|) ,

set
ψs,N(α) =

∑

θ∈Rs

S(q, a1, . . . , ad)VN(α− θ)ζ(10s|α− θ|) ,

and
L̂N (α) =

∑

s≥0

ψs,N(α) .

We have the following lemma.

Lemma 11. There exist σ > 0 and Cσ > 0 such that

sup
α∈Td

∣

∣

∣
K̂N(α) − L̂N (α)

∣

∣

∣
≤

Cσ

Nσ
.

Proof. Suppose that δ > 0. We should think of δ as very small—of the order
of 1

100
, though this is flexible. Suppose α is in MN (θ0) with q ≤ N

δ. Also

suppose that θ0 ∈ Rs0 . Note that this means 2s0 < N
δ. Observe in addition

that for each natural number s the functions {ζ(10s|α−θ|)}θ∈Rs
have disjoint

supports. The triangle inequality now gives
∣

∣

∣
K̂N(α) − L̂N (α)

∣

∣

∣
≤
∣

∣

∣
K̂N(α) − S(q, a1, . . . , ad)VN(α− θ0)ζ(10s|α− θ0|)

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

s6=s0

ψs,N(α)

∣

∣

∣

∣

∣

.

Lemma 9 and the elementary estimates |S(q, a1, . . . , ad)| ≤ 1 and |VN(β)| ≤ 1
give

∣

∣

∣K̂N (α) − L̂N(α)
∣

∣

∣ ≤
∣

∣1 − ζ
(

10s0(α− θ0)
)∣

∣+ CN
− 1

2

+
∑

s≤s1

sup
θ∈Rs,0

|VN(β)| + C2−s1δ0 (4.3)

for an arbitrary natural number s1, where

Rs,0 =

{

Rs if θ0 /∈ Rs ,

Rs \ {θ0} if θ0 ∈ Rs .

The natural number s1 = s1(N) will be chosen optimally later. As 10s0 < N
4δ,

it follows that
10s0|α− θ0| ≤ N

4δ
N

−1+δ = N
5δ−1
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and so the first term on the right hand side of (4.3) is zero. Now for two
rationals in reduced form a

b
and a0

b0
we have

∣

∣

∣

∣

a

b
−
a0

b0

∣

∣

∣

∣

≥
1

bb0
.

Therefore

|θi − θi,0| ≥
1

2
q
−12−s1(N) ≥ 1

4
N

−2δ
.

Also |αi − θi| < N
−i+δ so |αi − θi| is small compared to |θi − θi,0|. So using

the fact that

|αi − θi| ≥ |θi − θi,0| − |αi − θi,0| (i = 1, 2, . . . ),

we see that |αi− θi| >
1

2
|θi − θ0,i|. We now set 2s1(N) ∼ N

δ. Using Lemma 6,

∑

s≤s1(N)

sup
θ∈Rs,0

|VN(α− θ)| ≤ C

∑

s≤s1(N)

sup
θ∈Rs,0

(

1 +
d
∑

j=1

|βj|N
j

)− 1

d

≤ C

∑

s≤s1(N)

sup
θ∈Rs,0

(

1 +
d
∑

j=1

|θi − θi,0|N
j

)− 1

d

,

which, on noting that the number of terms in the first term is O(logn), is

≤ C(logN)N
2δ−1

d ,

thereby proving Lemma 11 if α is in MN (θ) for some θ with q ≤ N
δ.

Now suppose that α is not in MN (θ) for any θ with q ≤ N
δ. Evidently

∣

∣

∣
K̂N(α) − L̂N (α)

∣

∣

∣
≤
∣

∣

∣
K̂N(α)

∣

∣

∣
+
∣

∣

∣
L̂N (α)

∣

∣

∣
.

By Lemma 9 we have
∣

∣

∣
K̂N(α)

∣

∣

∣
≤

C

N δ′
.

As on the major arcs we have
∣

∣

∣
L̂N (α)

∣

∣

∣
≤

∑

s≤s1(N)

sup
θ∈Rs

|VN(α− θ)| + C2−s1(N)δ0

which, using Lemma 6 and the fact that α is not on the major arcs gives

|L̂N(α)| ≤ C(logN)






1 +

∑

j:|αj−
aj

qj
|Nj≥Nδ

∣

∣

∣

∣

αj −
aj

qj

∣

∣

∣

∣

N
j







− 1

d

+ C2−s1(N)δ0

≤ C(logN) max(N− δ

d , N
−δδ0)

as required. �
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Let H denote the Hilbert space L
2(X, β, µ) endowed with the standard

inner product

〈f, g〉 =

∫

X

fgdµ .

By an abuse of notation let U−1

i denote the adjoint of the unitary Ui defined
by

Uif(x) = f(Tix) (i = 1, 2, . . . ) .

For each f ∈ L
2 one readily checks that (〈f, Un1

1
. . . U

nd

d f〉)
(n1,...,nd)∈Zn defines

a positive definite function on Zd and so we have the following lemma:

Lemma 12. Let 〈., .〉 denote the standard inner product on L
2. Then if f is

in L
2 there exists a measure µf on Td such that

〈f, Un1

1
. . . U

nd

d f〉 =

∫

Tn

e
−2πin.tdµf ,

where n = (n1, . . . , nd) ∈ Zd and t = (t1, . . . , td) ∈ Td.

Swapping the order of summation and integration we see that

||S(f)||2
2

=
∑

k≥1

||ANk+1
f − ANk

f ||2
2

and so, assuming that ||f || = 1, as we may without loss of generality, in
proving Theorem 3 we require to prove that there exists C > 0 such that

∑

k≥1

||ANk+1
f − ANk

f ||2
2
≤ C .

Using Lemma 12 we see that

∑

k≥1

||ANk+1
f − ANk

f ||2
2

=

∫

Td

(

∑

k≥1

∣

∣

∣
K̂Nk+1

(α) − K̂Nk
(α)
∣

∣

∣

2

)

dµf(α) .

Thus proving Theorem 3 reduces to showing that there exists C > 0 such
that

∑

k≥1

∣

∣

∣
K̂Nk+1

(α) − K̂Nk
(α)
∣

∣

∣

2

≤ C .

Using Lemma 11 and our assumption on
Nk+1

Nk

we see that

||{K̂Nk+1
(α) − K̂Nk

(α)}||`2(Z) ≤ C + ||{L̂Nk+1
(α) − L̂Nk

(α)}||`2(Z) .

Also

||{L̂Nk+1
(α) − L̂Nk

(α)}||`2(Z) ≤
∑

s≥0

(

∑

k≥1

|ψs,Nk+1
(α) − ψs,Nk

(α)|2

)
1

2

.
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Hence Theorem 3 is proved if we can show there exists δ, C > 0 such that

sup
α∈Td

∣

∣

∣

∣

∣

∑

k≥1

(

ψs,Nk+1
(α) − ψs,Nk

(α)
)

2

∣

∣

∣

∣

∣

≤
C

2sδ
.

Let χ denote the characteristic function of the interval [−1, 1] in R and let

ψ
′
s,N(α) =

∑

θ∈Rs:q(θ)=q

S(q, a1, . . . , ad)χ(Nd|α− θ|)ζ(10s|α− θ|) .

Then we have

||(ψs,Nk+1
− ψs,Nk

)(α)||`2(Z) ≤ ||(ψ′
s,Nk+1

− ψ
′
s,Nk

)(α)||`2(Z)

+||(ψs,Nk
− ψ

′
s,Nk

)(α)||`2(Z) + ||(ψs,Nk+1
− ψ

′
s,Nk+1

)(α)||`2(Z) .

Also

||(ψs,Nk+1
− ψ

′
s,Nk+1

)(α)||`2(Z) ≤ ||(ψs,Nk
− ψ

′
s,Nk

)(α)||`2(Z) .

Hence Theorem 3 follows if we can show that

||(ψ′
s,Nk+1

− ψ
′
s,Nk

)(α)||`2(Z) ≤
C

2sδ
(4.4)

and

||(ψs,Nk
− ψ

′
s,Nk

)(α)||`2(Z) ≤
C

2sδ
. (4.5)

To show (4.4) note that

||(ψ′
s,Nk+1

− ψ
′
s,Nk

)(α)||2`2(Z)
= ||Σ1||`2(Z) ,

where

Σ1 =
∑

θ∈Rs:q(θ)=q

S(q, a1, . . . , ad)[χ(Nd
k+1

|α− γ|)− χ(Nd
k |α− γ|)]ζ(10s|α− γ|) .

Recall that the functions (ζ(10s|α − θ|))θ∈Rs
are disjointly supported. This

means that there is a unique rational θ = γ, say, such that this is

≤
∑

k≥1

|s(γ)|2
∣

∣χ(Nd
k+1

|α− γ|) − χ(Nd
k |α− γ|)

∣

∣

2

,

which using Lemma 7 is

≤
C

2sδ0

∑

k≥1

∣

∣χ(Nd
k+1

|α− γ|) − χ(Nd
k |α− γ|)

∣

∣

2

≤
C

2sδ0
,
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because at most one term in the above sum is non-zero. We now show (4.5).
The left hand side of this equation is, by Lemma 6,

≤
C

2sδ0









∑

Nk≤
1

|γ|

1

d

|VN(α− γ) − 1|2 +
∑

Nk>
1

|γ|

1

d

|VN(α− γ)|2









≤
C

2sδ0









∑

Nk≤
1

|γ|

1

d

|γ|2a2kd +
∑

Nk>
1

|γ|

1

d

|γ|−
2

d (k log b)









,

≤
C

2sδ0
,

as required.
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POLYNOMIAL INEQUALITIES, MAHLER’S MEASURE,

AND MULTIPLIERS

IGOR E. PRITSKER

Abstract. We survey polynomial inequalities obtained via coefficient

multipliers, for norms defined by the contour or the area integrals over

the unit disk. Special attention is devoted to the Szegő composition and

the inequalities related to Mahler’s measure.

We also consider a new height on polynomial spaces defined by the

integral over the normalized area measure on the unit disk. This natu-

ral analog of Mahler’s measure inherits many nice properties such as the

multiplicative one. However, this height is a lower bound for Mahler’s

measure, and it fails an analog of Lehmer’s conjecture.

1. The Szegő composition and polynomial inequalities

This paper is a survey of results on polynomial inequalities obtained via
coefficient multipliers, and other topics related to Mahler’s measure. Let Cn[z]
and Zn[z] be the sets of all polynomials of degree at most n with complex and
integer coefficients respectively. Mahler’s measure of a polynomial Pn ∈ Cn[z]
is defined by

M(Pn) := exp

(

1

2π

∫

2π

0

log |Pn(eiθ)| dθ

)

.

It is also known as the contour geometric mean or as the H
0 Hardy space

norm. The latter name is explained by the following relation to the Hardy
spaces. Defining the Hardy space norm by

‖Pn‖Hp :=

(

1

2π

∫

2π

0

|Pn(e
iθ)|p dθ

)1/p

, 0 < p < ∞,

we note [18] that M(Pn) = limp→0+ ‖Pn‖Hp. An application of Jensen’s in-
equality immediately gives that

M(Pn) = |an|
∏

|zj |>1

|zj|
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Key words and phrases. Polynomials, Mahler’s measure, heights, zero distribution,
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for Pn(z) = an

∏n
j=1

(z − zj) ∈ Cn[z].

For a polynomial Λn(z) =
∑n

k=0
λk

(

n

k

)

z
k ∈ Cn[z], define the Szegő compo-

sition with Pn(z) =
∑n

k=0
akz

k ∈ Cn[z] by

ΛPn(z) :=

n
∑

k=0

λkakz
k
.(1.1)

If Λn is a fixed polynomial, then ΛPn is a multiplier (or convolution) oper-
ator acting on Pn. More information on the history and applications of this
composition may be found in [10], [1], [2] and [33]. De Bruijn and Springer
[10] proved a very interesting general inequality stated below.

Theorem 1.1. Suppose that Pn ∈ Cn[z]. If Λn ∈ Cn[z] and ΛPn ∈ Cn[z] are

defined by (1.1), then

M(ΛPn) ≤ M(Λn)M(Pn).(1.2)

If Λn(z) = (1 + z)n then ΛPn(z) ≡ Pn(z) and M(Λn) = 1, so that (1.2)
turns into equality, showing sharpness of Theorem 1.1. This result has not
received the attention it truly deserves. In particular, it contains the following
inequality that is usually attributed to Mahler, who proved it later in [26].

Corollary 1.2. M(P ′
n) ≤ nM(Pn)

To see this, just note that if Λn(z) = nz(1 + z)n−1 =
∑n

k=0
k
(

n

k

)

z
k
, then

ΛPn(z) = zP
′
n(z) and M(Λn) = n. Furthermore, (1.2) immediately answers a

question about a lower bound for Mahler’s measure of derivative raised in [14,

pp. 12 and 194]. Following Storozhenko [42], we consider P
′
n(z) =

∑n−1

k=0
akz

k

and write

1

z
(Pn(z) − Pn(0)) =

n−1
∑

k=0

ak

k + 1
z

k = ΛP
′
n(z),

where

Λn−1(z) =

n−1
∑

k=0

1

k + 1

(

n − 1

k

)

z
k =

(1 + z)n − 1

nz
.

The result of de Bruijn and Springer (1.2) gives

Corollary 1.3. [42] We have M(Pn(z) − Pn(0)) ≤ cn M(P ′
n), where

cn :=
1

n
M ((1 + z)n − 1) =

1

n

∏

n/6<k<5n/6

2 sin
kπ

n
.

We note that cn ≈ (1.4)n as n → ∞. One can produce many other inter-
esting consequences of (1.2), such as the well known estimate for coefficients
via Mahler’s measure.
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Corollary 1.4. If Pn(z) =
n
∑

k=0

akz
k then

|ak| ≤
(

n

k

)

M(Pn), k = 1, . . . , n.

The above inequality follows at once from (1.2) by letting Λn(z) =
(

n

k

)

z
k
,

k = 1, . . . , n. Another interesting question is how removing a specific power
term from the polynomial affects its Mahler’s measure. The answer is below.

Corollary 1.5. Let Pn(z) =

n
∑

k=0

akz
k and m = 0, . . . , n. We have

M

(

∑

k 6=m

akz
k

)

≤ M

(

(1 + z)n −
(

n

m

)

z
m

)

M (Pn) .

In particular, if m = 0 then M((1 + z)n − 1) =
∏

n/6<k<5n/6

2 sin
kπ

n
≈ (1.4)n

as n → ∞.

Again, the proof is a simple application of (1.2) with Λn(z) = (1 + z)n −
(

n

m

)

z
m

, so that λm = 0 and λk = 1, k 6= m. Finally, we state two variations
of (1.2).

Corollary 1.6. If Pn(z) =
n
∑

k=0

akz
k and m ∈ N, then

M

(

n
∑

k=0

λk

(

n

k

)−m

akz
k

)

≤ M

(

n
∑

k=0

λkz
k

)

M (Pn)(1.3)

and

M

(

n
∑

k=0

λ
m
k

(

n

k

)−m

akz
k

)

≤ M
m

(

n
∑

k=0

λkz
k

)

M (Pn) .(1.4)

An important generalization of Theorem 1.1 for the H
p norms was obtained

by Arestov [1].

Theorem 1.7. Suppose that Pn ∈ Cn[z]. If Λn ∈ Cn[z] and ΛPn ∈ Cn[z] are

defined by (1.1), then

‖ΛPn‖Hp ≤ M(Λn)‖Pn‖Hp , 0 ≤ p ≤ ∞.(1.5)

Recall that the Szegő composition can also be viewed as a multiplier or con-
volution operator in the sense of harmonic analysis. For Pn(z) =

∑n

k=0
akz

k,
we have

ΛPn(z) =

n
∑

k=0

λkakz
k =

(

n
∑

k=0

λkz
k

)

∗ Pn(z).
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Let ‖Λ‖ be the operator norm of Λ : Cn[z] → Cn[z] :

‖Λ‖ = sup
Pn∈Cn[z]

‖ΛPn‖Hp

‖Pn‖Hp

, 0 ≤ p ≤ ∞.

A particularly interesting class of multiplier operators is given by the bound
(norm) preserving operators. Those are described by the condition ‖ΛPn‖Hp ≤
‖Pn‖Hp for all Pn ∈ Cn[z], which holds if and only if ‖Λ‖ ≤ 1. If we choose
the multipliers λk to satisfy M(Λn) ≤ 1, then ‖Λ‖ ≤ 1 by Theorem 1.7.
Thus we may use the inequality ‖ΛPn‖Hp ≤ ‖Pn‖Hp to obtain lower bounds
for ‖Pn‖Hp via a proper choice of multipliers. There are other interesting
norm preserving convolution operators such as the following considered by
Sheil-Small [38, pp. 168-171].

Theorem 1.8. Let lim sup
k→∞

|λk|1/k ≤ 1. If λ0 = 1 and

<
(

∞
∑

k=0

λkz
k

)

>
1

2
, |z| < 1,

then ‖ΛPn‖Hp ≤ ‖Pn‖Hp for any polynomial Pn, where 1 ≤ p ≤ ∞.

In fact, Sheil-Small stated a result for generalized convolution operators
that covers more applications. It would be interesting to explore whether
Theorem 1.8 remains true for 0 ≤ p < 1, i.e., for the range of p including
Mahler’s measure.

2. An areal analog of Mahler’s measure

A natural counterpart of Mahler’s measure is obtained by replacing the
normalized arclength measure on the unit circle T by the normalized area
measure on the unit disk D. Namely, we define the A

0 Bergman space norm

by

‖Pn‖0 := exp

(

1

π

∫∫

D

log |Pn(z)| dA

)

.

This norm is also a multiplicative height of the polynomial Pn, cf. [32].
Furthermore, it has the same relation to Bergman spaces as Mahler’s measure
to Hardy spaces:

‖Pn‖0 = lim
p→0+

‖Pn‖p,

see [18], where

‖Pn‖p :=

(

1

π

∫∫

D

|Pn(z)|p dA

)

1/p

, 0 < p < ∞,

is the A
p Bergman space norm.

In fact, there is a direct relation between Mahler’s measure and its areal
analog, given below.
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Theorem 2.1. Let Pn(z) = an

∏n
j=1

(z − zj) =
∑n

k=0
akz

k ∈ Cn[z]. If Pn has

no roots in D, then ‖Pn‖0 = M(Pn) = |a0|. Otherwise

‖Pn‖0 = M(Pn) exp





1

2

∑

|zj |<1

(|zj|2 − 1)



 .(2.1)

This shows that the value of ‖Pn‖0 is influenced by the zeros inside the
unit disk more than that of M(Pn). We immediately obtain the following
comparison result from Theorem 2.1.

Corollary 2.2. For any Pn ∈ Cn[z], we have

e
−n/2

M(Pn) ≤ ‖Pn‖0 ≤ M(Pn).(2.2)

Equality holds in the lower estimate if and only if Pn(z) = anz
n
. The upper

estimate turns into equality for any polynomial without zeros in the unit disk.

If Pn(z) =
∑n

k=0
akz

k then

‖Pn‖0 ≥ |a0|,(2.3)

which follows from the area mean value inequality for the subharmonic func-
tion log |Pn| (cf. [12]). Hence

‖Pn‖0 ≥ 1 for all Pn ∈ Zn[z], Pn(0) 6= 0.(2.4)

A well known theorem of Kronecker [21] states that any monic irreducible
polynomial Pn ∈ Zn[z], Pn(0) 6= 0, with all zeros in the closed unit disk,
must be cyclotomic. One can write that statement in the form: M(Pn) = 1
for such Pn if and only if Pn is cyclotomic. A direct analog of this result exists
for ‖Pn‖0.

Theorem 2.3. Suppose that Pn ∈ Zn[z], Pn(0) 6= 0, is an irreducible poly-

nomial with all zeros in the closed unit disk. It is cyclotomic if and only if

‖Pn‖0 = 1.

The next natural question is whether one can find a uniform lower bound
‖Pn‖0 ≥ c > 1 for all non-cyclotomic Pn ∈ Zn[z], Pn(0) 6= 0. It is especially
interesting in view of Lehmer’s conjecture, because M(Pn) ≥ ‖Pn‖0 by (2.2).
However, the answer to the question is negative, as we show with the following
example.

Example 2.4. Consider Pn(z) = nz
n − 1. It has zeros zj, j = 1, . . . , n, that

are equally spaced on the circle |z| = n
−1/n

. Note that M(Pn) = n and

‖Pn‖0 = n exp

(

n(n−2/n − 1)

2

)

,

by (2.1). Since

n
−2/n = exp

(−2 log n

n

)

= 1 − 2 log n

n
+ O

(

log2
n

n2

)

,
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we obtain that

‖Pn‖0 = exp

(

O

(

log2
n

n

))

→ 1 as n → ∞.

Similarly, we have for the reciprocal polynomial P2n(z) = z
2n +nz

n +1 that

M(Pn) =
n +

√
n2 − 4

2
∼ n as n → ∞,

and

‖Pn‖0 =
n +

√
n2 − 4

2
exp

(

n

2

(

(

n +
√

n2 − 4

2

)2/n

− 1

))

→ 1 as n → ∞.

One may notice that for both sequences of polynomials in this example
the zeros are asymptotically equidistributed near the unit circle. In fact, this
is a part of a more general phenomenon. Consider a polynomial Pn(z) =
an

∏n
j=1

(z − zj) ∈ Cn[z], and define its normalized zero counting measure by

νn :=
1

n

n
∑

j=1

δzj
,

where δzj
is the unit point mass at zj. Our main result on the asymptotic

zero distribution is as follows.

Theorem 2.5. Suppose that Pn ∈ Zn[z], deg Pn = n, is a sequence of poly-

nomials without multiple zeros. If limn→∞ ‖Pn‖1/n
0

= 1 then the νn converge

to the normalized arclength measure dθ/(2π) on T in the weak* topology, as

n → ∞.

This result extends a theorem of Bilu [4] for Mahler’s measure; see also
Bombieri [5] and Rumely [36]. From a more general point of view, Theorem
2.5 is a descendant of Jentzsch’s result [20] on the asymptotic zero distribution
of the partial sums of a power series, and its generalization by Szegő [44]. This
area was further developed by Erdős and Turán [13], and by many others.

As an immediate application of Theorem 2.5 we obtain a result on the
growth of ‖Pn‖0 for polynomials with restricted zeros.

Corollary 2.6. Suppose that Pn ∈ Zn[z], deg Pn = n, is a sequence of poly-

nomials with simple zeros contained in a closed set E ⊂ C. If T 6⊂ E then

there exists a constant C = C(E) > 1 such that

lim inf
n→∞

‖Pn‖1/n
0

≥ C > 1.

This exhibits the geometric growth of ‖Pn‖0 for many families of polyno-
mials such as polynomials with real zeros, polynomials with zeros in a sector,
etc. Corresponding results with explicit bounds for Mahler’s measure were
obtained by Schinzel [37], Langevin [22, 23, 24], Mignotte [30], Rhin and
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Smyth [35], Dubickas and Smyth [11], and others. A detailed account of
these results is contained in Smyth [41].

In a somewhat different direction, we have the following result on the as-
ymptotic behavior of zeros.

Theorem 2.7. Suppose that Pn(z) = anz
n+. . .+a0 ∈ Cn[z], |a0| ≥ 1, n ∈ N,

is a sequence of polynomials.

(a) If limn→∞ ‖Pn‖0 = 1 then

lim inf
n→∞

min
1≤j≤n

|zj| ≥ 1.(2.5)

(b) If |an| ≥ 1 and limn→∞ M(Pn) = 1, then

lim
n→∞

min
1≤j≤n

|zj| = lim
n→∞

max
1≤j≤n

|zj| = 1.(2.6)

Thus part (a) of Theorem 2.7 indicates that all zeros of Pn are pushed out
of D as n → ∞, while in part (b) they all tend to the unit circle.

3. Polynomial inequalities in Bergman spaces

We obtain the following generalization of Theorems 1.1 and 1.7 for the
Bergman space norms.

Theorem 3.1. Suppose that Pn ∈ Cn[z]. If Λn ∈ Cn[z] and ΛPn ∈ Cn[z] are

defined by (1.1), then

‖ΛPn‖p ≤ M(Λn)‖Pn‖p, 0 ≤ p ≤ ∞.(3.1)

Note that equality holds in (3.1) for any polynomial Pn ∈ Cn[z] when
Λn(z) = (1 + z)n =

∑n
k=0

(

n

k

)

z
k
, because ΛPn ≡ Pn and M((1 + z)n) = 1.

This inequality allows to treat many problems in a unified way, and it has
numerous interesting consequences. Theorem 3.1 implies that z

n has the
smallest Bergman space norm among all monic polynomials.

Corollary 3.2. If Pn ∈ Cn[z] is a monic polynomial, then

‖Pn‖p ≥ ‖zn‖p =







e
−n/2

, p = 0,
(

2

pn + 2

)1/p

, 0 < p < ∞.
(3.2)

It is well known that ‖Pn‖∞ ≥ ‖zn‖∞ = 1, see [7, 33].
Another useful estimate compares norms on the concentric disks DR :=

{z : |z| < R} to that on the unit disk.

Corollary 3.3. If Pn ∈ Cn[z] and R ≥ 1, then
(

1

πR2

∫∫

DR

|Pn(z)|p dA

)

1/p

≤ R
n ‖Pn‖p, p ∈ (0,∞),(3.3)
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and

exp

(

1

πR2

∫∫

DR

log |Pn(z)| dA

)

≤ R
n ‖Pn‖0,(3.4)

where equality holds for Pn(z) = z
n
.

Again, in the case p = ∞, it is already known that maxz∈DR
|Pn(z)| ≤

R
n‖Pn‖∞. See [33].
Another consequence relates ‖Pn‖p to the coefficients of Pn.

Corollary 3.4. If Pn(z) =
∑n

k=0
akz

k ∈ Cn[z] then

|ak| ≤
(

pk + 2

2

)

1/p(
n

k

)

‖Pn‖p, k = 0, . . . , n, 0 < p < ∞,(3.5)

and

|ak| ≤ e
k/2

(

n

k

)

‖Pn‖0, k = 0, . . . , n.(3.6)

One can certainly extend the list of corollaries by choosing appropriate
polynomials Λn.

3.1. Bernstein-type inequalities. The original Bernstein inequality (cf.
[7], [31] and [33]) gives an estimate for the supremum norm of the derivative
of a polynomial on D:

‖P ′
n‖∞ ≤ n‖Pn‖∞, Pn ∈ Cn[z].

Its sharpness is easily seen by considering Pn(z) = z
n
. Zygmund [47] extended

this result to the Hardy spaces by proving that

‖P ′
n‖Hp ≤ n‖Pn‖Hp, p ∈ [1,∞).

As we know from the first section, De Bruijn and Springer [10], and later
Mahler [26], showed that

M(P ′
n) ≤ nM(Pn),

thus settling the case p = 0 for the Hardy space norms. It had been an open
question for a long time, whether the above inequality is true for 0 < p < 1.
After a partial result of Máté and Nevai [29], the question was answered in
the affirmative by Arestov [1].

We obtain the following version of the Bernstein inequality for Bergman
spaces, as a consequence of Theorem 3.1.

Theorem 3.5. For any Pn ∈ Cn[z], we have that

‖zP ′
n‖p ≤ n‖Pn‖p, 0 ≤ p < ∞.(3.7)

Note that equality holds here for Pn(z) = z
n
.

It is also of interest to find the Bernstein inequalities in Bergman spaces
exactly matching the classical one in form. For example, when p = 0, we have
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Corollary 3.6. If Pn ∈ Cn[z] then

‖P ′
n‖0 ≤

√
e n ‖Pn‖0,(3.8)

where equality holds for Pn(z) = z
n
.

Furthermore, we obtain by an elementary argument the following

Proposition 3.7. If Pn ∈ Cn[z] then

‖P ′
n‖2 ≤

√

n(n + 1) ‖Pn‖2,(3.9)

with equality for Pn(z) = z
n
.

This suggests that, for arbitrary p ∈ (0,∞), one might be able to prove

Conjecture 3.8. If Pn ∈ Cn[z] then

‖P ′
n‖p ≤ n

(

1 +
1

n − 1 + 2/p

)1/p

‖Pn‖p, 0 < p < ∞,(3.10)

with equality for Pn(z) = z
n
.

Note that Corollary 3.6 may be viewed as the limiting case of this conjecture
as p → 0, while the classical Bernstein inequality is obtained by letting p tend
to ∞.

3.2. Comparing the Hardy and the Bergman norms. It is well known
[12, 19] that for any function f ∈ H

p we have

‖f‖p ≤ ‖f‖Hp, 0 ≤ p ≤ ∞.

Clearly, we have equality for p = ∞. One can prove inequalities for polyno-
mials in the opposite direction, of the form

‖Pn‖Hp ≤ C(n, p) ‖Pn‖p.

For example, we have for p = 0 that

M(Pn) ≤ e
n/2 ‖Pn‖0,(3.11)

where equality holds for Pn(z) = z
n (see Corollary 2.2).

The case p = 2 is easy to handle, because

‖Pn‖2

H2 =

n
∑

k=0

|ak|2 ≤ (n + 1)

n
∑

k=0

|ak|2
k + 1

= (n + 1) ‖Pn‖2

2
,

where Pn(z) =
∑n

k=0
akz

k
. Hence

Proposition 3.9. If Pn ∈ Cn[z] then

‖Pn‖H2 ≤
√

n + 1 ‖Pn‖2,(3.12)

with equality for Pn(z) = z
n
.

It is likely that the following is true.
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Conjecture 3.10. If Pn ∈ Cn[z] then

‖Pn‖Hp ≤ (pn/2 + 1)1/p ‖Pn‖p, 0 < p < ∞,(3.13)

with equality for Pn(z) = z
n
.

This holds in the limit for p = ∞ (trivially) and for p = 0 by (3.11).

4. Approximation by polynomials with integer coefficients

We consider a related question of approximation by polynomials with in-
teger coefficients on the unit disk. There is a well known condition necessary
for approximation by integer polynomials in essentially any norm on D.

Proposition 4.1. Suppose that Pn ∈ Zn[z], n ∈ N, converge to f uniformly

on compact subsets of D. Then f is analytic in D and f
(k)(0)/k! ∈ Z for all

k ≥ 0, k ∈ Z.

This necessary condition for the convergence is clearly equivalent to the
fact that the power series expansion of f at the origin has integer coefficients.

It is well known that approximation by polynomials with integer coefficients
is possible in H

p only in the trivial case. See [16] and [45]. More precisely,
we have

Proposition 4.2. Suppose that f ∈ H
p
, 0 < p ≤ ∞. If Pn ∈ Zn[z], n ∈ N,

satisfy

lim
n→∞

‖f − Pn‖Hp = 0,(4.1)

then f is a polynomial with integer coefficients.

It remains an open question whether this proposition is true for p = 0, i.e.
for approximation of functions in Mahler’s measure. One can see from the
proof of Proposition 4.2, given in Section 6.4, that the main obstacle is that we
have no substitute for the triangle inequality in the case of Mahler’s measure.
Mahler [27] raised an interesting question related to this problem. While it
is not possible to have M(f + g) ≤ C(M(f) + M(g)) for a fixed constant C,
in general, one can consider a natural analog of the triangle inequality for all
polynomials Pn, Qn ∈ Cn[z] :

M(Pn + Qn) ≤ c
n(M(Pn) + M(Qn)).

Mahler [27] showed that c = 2 is possible in the above inequality, and asked
what is the best (smallest) value of c. He later improved the constant c in
[28], and the best currently known range 1.7916 < c < 1.8493 was obtained
by Arestov [2].

Generally, nontrivial approximation by integer polynomials in the supre-
mum norm is valid on sets with transfinite diameter (capacity) less than 1
[16, 45], and it is not possible if the transfinite diameter is greater than or
equal to 1. But the transfinite diameter of D is exactly equal to 1, so that we
deal with a borderline case. However, we show that the Bergman space A

p
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is different from the Hardy space H
p in this regard, as it does allow approxi-

mation by polynomials with integer coefficients.

Theorem 4.3. Suppose that f ∈ A
p
, 1 < p < ∞. We have

lim
n→∞

‖f − Pn‖p = 0,(4.2)

for a sequence of polynomials Pn ∈ Zn[z], n ∈ N, if and only if f has a

power series expansion about z = 0 with integer coefficients. Clearly, this is

equivalent to f
(k)(0)/k! ∈ Z for all k ≥ 0, k ∈ Z.

Thus there are many functions in A
p that can be approximated by poly-

nomials with integer coefficients. In fact, one can use partial sums of the
power series for this purpose. See the proof of Theorem 4.3. However, we
do not know whether Theorem 4.3 is valid in the case 0 ≤ p ≤ 1. Note
that if f ∈ A

p
, p > 1, has a Taylor expansion with integer coefficients, then

f ∈ A
q for any q ∈ [0, p) and the partial sums Pn of this expansion satisfy

‖f − Pn‖q ≤ ‖f − Pn‖p → 0 as n → ∞.

5. Multivariate polynomials

We believe that many of the results mentioned in this survey are capable of
generalization to the multivariate case. However, we do not try to accomplish
such an ambitious program here, and restrict ourselves to a few simple re-
marks. The definition of ‖Pn‖0 is easily generalized to the case of multivariate
polynomials Pn(z1, . . . , zd) as follows:

‖Pn‖0 := exp

(

1

πd

∫

D

. . .

∫

D

log |Pn(z1, . . . , zd)| dA(z1) . . . dA(zd)

)

.

It is also parallel to multivariate Mahler’s measure

M(Pn) := exp

(

1

(2π)d

∫

T

. . .

∫

T

log |Pn(z1, . . . , zd)| |dz1| . . . |dzd|
)

.

We note that many of the properties of ‖Pn‖0 are preserved in the multivariate
case. Thus it still defines a multiplicative height on the space of polynomials.
If Pn is a polynomial with complex coefficients and the constant term a0, then
we can apply the area mean value inequality to the (pluri)subharmonic func-
tion log |Pn(z1, . . . , zd)| in each variable, which gives together with Fubini’s
theorem that

‖Pn‖0 ≥ |a0|.
Furthermore, the above inequality turns into equality if Pn(z1, . . . , zd) 6= 0
on Dd

, by the area mean value theorem for the (pluri)harmonic function
log |Pn(z1, . . . , zd)|. However, it is rather unlikely that some kind of explicit
relation such as (2.1) exists for general multivariate polynomials.

We now state an estimate generalizing Corollary 2.2.
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Proposition 5.1. For a polynomial

Pn(z1, . . . , zd) =
∑

k1+...+kd≤n

ak1...kd
z

k1

1
. . . z

kd

d(5.1)

of degree at most n with complex coefficients, we have

e
−n/2

M(Pn) ≤ ‖Pn‖0 ≤ M(Pn).(5.2)

Equality holds in the lower estimate for any Pn(z1, . . . , zd) = ak1...kd
z

k1

1
. . . z

kd

d

with k1 + . . . + kd = n. The upper estimate turns into equality for any poly-

nomial not vanishing in Dd
.

It is of interest to find explicit values of the multivariate ‖Pn‖0. This prob-
lem has received a considerable attention in Mahler’s measure setting (see [9],
[39, 40], [14], [17]), and it remains a very active area of research. In particular,
it is of importance to characterize multivariate polynomials with integer co-
efficients satisfying ‖Pn‖0 = 1. Smyth [40] proved a complete Kronecker-type
characterization for the multivariate Mahler’s measure M(Pn) = 1. Thus we
expect that one should be able to produce an analog for ‖Pn‖0, generalizing
Theorem 2.3.

Example 5.2. The following identities hold for the multivariate ‖Pn‖0:

(a) ‖z1 + z2‖0 = e
−1/4

(b) ‖1 + z
k1

1
. . . z

kd

d ‖0 = 1, k1, . . . , kd ≥ 0
(c) If the polynomial Pn of the form (5.1) satisfies

|a0...0| ≥
∑

0<k1+...+kd≤n

|ak1...kd
|,

then ‖Pn‖0 = M(Pn) = |a0...0|.

6. Proofs

6.1. Proofs for Section 1.

Proof of Corollary 1.6. Let λk ∈ C, k = 0, . . . , n, be arbitrary fixed numbers,
and define the operator

AmPn(z) :=

n
∑

k=0

λk

(

n

k

)−m

akz
k
.

It is clear from (1.2) that

M (A1Pn) = M

(

n
∑

k=0

λk

(

n

k

)−1

akz
k

)

≤ M

(

n
∑

k=0

λkz
k

)

M (Pn) ,(6.1)

which we use as the basis of induction in m. Assuming that

M (AmPn) ≤ M

(

n
∑

k=0

λkz
k

)

M (Pn)
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holds, we obtain that

M (Am+1Pn) = M

(

n
∑

k=0

λk

(

n

k

)−m−1

akz
k

)

≤ M

(

n
∑

k=0

λk

(

n

k

)−m

akz
k

)

M

(

n
∑

k=0

z
k

)

,

where we used (6.1) with λk replaced by λk

(

n

k

)−m
ak, and with

Pn(z) =
∑n

k=0
z

k. Since M
(
∑n

k=0
z

k
)

= 1, it follows that

M (Am+1Pn) ≤ M (AmPn) , m ∈ N,

and (1.3) is proved by the induction hypothesis.
Let

BPn(z) :=
n
∑

k=0

λk

(

n

k

)−1

akz
k = A1Pn(z),

so that its m-fold composition is

B
m

Pn(z) =
n
∑

k=0

λ
m
k

(

n

k

)−m

akz
k
.

Applying (6.1) m times, we arrive at (1.4).
�

6.2. Proofs for Section 2.

Proof of Theorem 2.1. If Pn does not vanish in D, then log |Pn(z)| is harmonic
in D. Hence M(Pn) = |a0| and ‖Pn‖0 = |a0| follow from the contour and area
mean value theorems. Assume now that Pn has zeros in D. Applying Jensen’s
formula, we obtain that

log M(Pn) =
1

2π

∫

2π

0

log |Pn(eiθ)| dθ = log |an| +
∑

|zj |≥1

log |zj|.

Furthermore,

log ‖Pn‖0 =
1

π

∫

1

0

∫

2π

0

log |Pn(re
iθ)| rdrdθ

= 2

∫

1

0

(

1

2π

∫

2π

0

log |Pn(reiθ)| dθ

)

rdr

= 2

∫

1

0



log |an| +
∑

|zj |≥r

log |zj| +
∑

|zj |<r

log r



 rdr

= log |an| +
∑

|zj |≥1

log |zj| +
1

2

∑

|zj |<1

(|zj|2 − 1).
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Hence

‖Pn‖0 = M(Pn) exp





1

2

∑

|zj |<1

(|zj|2 − 1)



 .

�

Proof of Corollary 2.2. Inequality (2.2) follows from (2.1) after observing that
the smallest value of the exponential is achieved when all zj = 0, while the
largest value is 1 when all |zj| ≥ 1.

�

Proof of Theorem 2.3. If Pn is cyclotomic, then ‖Pn‖0 = 1 by Theorem 2.1,
because |zj| = 1, j = 1, . . . , n, and M(Pn) = 1. Assume now that ‖Pn‖0 = 1.
Let zj, j = 1, . . . , m, m ≤ n, be the zeros of Pn in D. Then we have from
(2.1) that

‖Pn‖0 = |a0|
m
∏

j=1

e
(|zj |2−1)/2

|zj|
≥

m
∏

j=1

e
(|zj |2−1)/2

|zj|
,(6.2)

where a0 6= 0 is the constant term of Pn. Define g(x) := e
(x2−1)/2

/x, x > 0,
and observe that g

′(x) < 0 when x ∈ (0, 1), while g
′(x) > 0 when x ∈ (1,∞).

Hence

g(1) = 1 is the strict global minimum for g(x) on (0,∞).(6.3)

It follows from (6.2)-(6.3) that

1 <

m
∏

j=1

g(|zj|) =

m
∏

j=1

e
(|zj |2−1)/2

|zj|
≤ ‖Pn‖0 = 1,

which is a contradiction. Hence Pn has no zeros in D, and M(Pn) = ‖Pn‖0 = 1
by Theorem 2.1. This implies that Pn is cyclotomic by Kronecker’s theorem.

We could also proceed in a different way, by assuming that ‖Pn‖0 = 1 and
observing from (6.2) that

exp

(

m
∑

j=1

|zj|2 − 1

2

)

=
1

|a0|

m
∏

j=1

|zj|

Since the expression on the right is an algebraic number, as well as the sum
in the exponent on the left, we obtain that equality is only possible when the
latter sum is zero, by the well known result of Lindemann that the exponential
of a nonzero algebraic number is transcendental [3]. Hence |zj| ≥ 1, j =
1, . . . , n, and M(Pn) = ‖Pn‖0 = 1 as before.

�

Proof of Theorem 2.5. We first show that Pn has o(n) zeros in Dr := {z :
|z| < r} as n → ∞, for any r < 1. Assume to the contrary that there is a
subsequence of n such that Pn has at least αn zeros, with α > 0, in some
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Dr, r < 1. Suppose that those zeros are zj 6= 0, j = 1, . . . , m, m ≤ n, and
proceed as in the proof of Theorem 2.3 to obtain

m
∏

j=1

g(|zj|) =

m
∏

j=1

e
(|zj |2−1)/2

|zj|
≤ ‖Pn‖0(6.4)

by (6.2). Since g(x) = e
(x2−1)/2

/x is strictly decreasing on (0, 1), we have that
m
∏

j=1

g(|zj|) ≥ (g(r))αn
.

It immediately follows from (6.3) and (6.4) that

lim sup
n→∞

‖Pn‖1/n
0

≥ (g(r))α
> 1,

which is in direct conflict with assumptions of this theorem. If Pn has a simple
zero at z = 0, then Pn(z) = zQn−1(z) and ‖Pn‖0 = ‖Qn−1‖0/

√
e. Hence we

can apply the above argument to Qn−1 and come to the same conclusion that
Pn has o(n) zeros in Dr := {z : |z| < r}, r < 1, as n → ∞.

The second step is to show that limn→∞(M(Pn))1/n = 1. Note that

1 ≤ M(Pn) = ‖Pn‖0 exp





1

2

∑

|zj |<1

(1 − |zj|2)



 .(6.5)

If Pn has m = o(n) zeros in Dr, r < 1, then

exp





1

2

∑

|zj |<1

(1 − |zj|2)



 ≤ e
m/2+n(1−r2

)/2
.

Using this in (6.5), we obtain that

1 ≤ lim inf
n→∞

(M(Pn))1/n ≤ lim sup
n→∞

(M(Pn))1/n

≤ e
(1−r2

)/2 lim
n→∞

‖Pn‖1/n
0

= e
(1−r2

)/2
.

Hence limn→∞(M(Pn))1/n = 1 follows by letting r → 1− . The proof may now
be completed by applying Bilu’s result [4] (at least when Pn is irreducible for
all n ∈ N), but we prefer to continue with an independent proof via a standard
potential theoretic argument.

Observe that Pn(z) = an

∏n
j=1

(z − zj) has o(n) zeros in C \ Dr, r > 1, for

otherwise we would have lim infn→∞(M(Pn))1/n
> 1 as

M(Pn) = |an|
∏

|zj |>1

|zj| ≥
∏

|zj |>1

|zj|.

This also implies that

lim
n→∞

|an|1/n = 1.(6.6)
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Hence any weak* limit ν of the sequence νn must satisfy supp ν ⊂ T. Define
the logarithmic energy of ν by

I(ν) :=

∫∫

log
1

|z − t|dν(z) dν(t).

Our goal is to show that I(ν) = 0, which implies that ν has the smallest
possible energy among all positive Borel measures of mass 1 supported on T.

On the other hand, it is well known in potential theory that the equilibrium
measure minimizing the energy integral is unique, and it is equal to the nor-
malized arclength on T [34, 46]. Thus ν = dθ/(2π) and the proof would be
completed.

Define the discriminant of Pn as ∆n := a
2n−2

n

∏

1≤j<k≤n(zj − zk)
2. Observe

that it is an integer, being a symmetric form with integer coefficients in the
roots of Pn ∈ Zn[z]. Since Pn has no multiple roots, we have ∆n 6= 0 and
|∆n| ≥ 1. Therefore

log
1

|∆n|
= −(2n − 2) log |an| +

∑

j 6=k

log
1

|zj − zk|
≤ 0.(6.7)

Let

KM(z, t) := min

(

log
1

|z − t| , M
)

, M > 0.

It is clear that KM(z, t) is a continuous function in z and t on C×C, and that
KM(z, t) increases to log 1

|z−t|
as M → ∞. Using the Monotone Convergence

Theorem and the weak* convergence of νn × νn to ν × ν, we obtain that

I(ν) = lim
M→∞

∫∫

KM(z, t) dν(z) dν(t)

= lim
M→∞

(

lim
n→∞

∫∫

KM(z, t) dνn(z) dνn(t)

)

= lim
M→∞

(

lim
n→∞

(

1

n2

∑

j 6=k

KM(zj, zk) +
M

n

))

≤ lim
M→∞

(

lim inf
n→∞

1

n2

∑

j 6=k

log
1

|zj − zk|

)

= lim inf
n→∞

1

n2
log

|an|2n−2

∆n

.

Hence I(ν) ≤ 0 follows from (6.6)-(6.7). But I(µ) > 0 for any positive unit
Borel measure supported on T, with the only exception for the equilibrium
measure dµT := dθ/(2π), I(µT) = 0, see [46, pp. 53-89].

�

Proof of Theorem 2.7. (a) We use the same notation and approach as in the
proof of Theorem 2.3. If Pn has no zeros in D, then min1≤j≤n |zj| ≥ 1.
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Otherwise, let zj, j = 1, . . . , m, m ≤ n, be the zeros of Pn in D. It follows
from (6.2)-(6.3) that

‖Pn‖0 = |a0|
m
∏

j=1

e
(|zj |

2−1)/2

|zj|
≥ g

(

min
1≤j≤n

|zj|
)

> 1.

Thus we obtain the result by the continuity of g(x) = e
(x2−1)/2

/x, x > 0, and
(6.3).

(b) Note that limn→∞ ‖Pn‖0 = 1 in this case too, by (2.2) and (2.3). Hence
(2.5) holds true. Furthermore, we have for any zero zk ∈ C \ D that

1 ≤ |zk| ≤ |an|
∏

|zj |>1

|zj| = M(Pn).

Thus
lim

n→∞
max
1≤j≤n

|zj| = 1,

and (2.6) follows.
�

6.3. Proofs for Section 3.

Proof of Theorem 3.1. Using (1.2) for the polynomial Pn(rz), r ∈ [0, 1], we
obtain that

1

2π

∫

2π

0

log |ΛPn(re
iθ)| dθ ≤ log M(Λn) +

1

2π

∫

2π

0

log |Pn(re
iθ)| dθ.

Hence (3.1) follows for p = 0, if we multiply this inequality by r dr and
integrate from 0 to 1. Similarly, we obtain from (1.5) that

1

2π

∫

2π

0

|ΛPn(reiθ)|p dθ ≤ M
p(Λn)

2π

∫

2π

0

|Pn(reiθ)|p dθ, 0 < p < ∞,

which gives (3.1) for this range of p after integration with respect to r dr.

When p = ∞, (3.1) is identical to (1.5).
�

Proof of Corollary 3.2. Consider a monic polynomial Pn(z) = z
n + . . . and

Λn(z) = z
n
. Then ΛPn(z) = z

n
, so that (3.2) follows from (3.1) and an

elementary computation.
�

Proof of Corollary 3.3. Let Λn(z) = (1 + Rz)n =
∑n

k=0

(

n

k

)

R
k
z

k
. Then

ΛPn(z) = Pn(Rz) and M(Λn) = R
n
. Hence (3.1) gives that

‖Pn(Rz)‖p ≤ R
n‖Pn‖p, 0 ≤ p < ∞ and R ≥ 1.

Changing variable and passing to the integrals over DR, we obtain (3.3) and
(3.4). The case of equality for Pn(z) = z

n is verified by a routine calculation.
�
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Proof of Corollary 3.4. Let Λn(z) =
(

n

k

)

z
k
, 0 ≤ k ≤ n. Then ΛPn(z) = akz

k

and M(Λn) =
(

n

k

)

. It follows from (3.1) that

|ak|‖zk‖p = ‖akz
k‖p ≤

(

n

k

)

‖Pn‖p, 0 ≤ p ≤ ∞.

One only needs now to find ‖zk‖p, to show that (3.5) and (3.6) hold true.
�

Proof of Theorem 3.5. We use the approach of de Bruijn and Springer [10, 1,
2, 33] by setting Λn(z) = nz(1 + z)n−1 =

∑n

k=0
k
(

n

k

)

z
k
. This gives ΛPn(z) =

zP
′
n(z) and M(Λn) = n. Hence (3.7) is a direct consequence of (3.1).

�

Proof of Corollary 3.6. In order to deduce Corollary 3.6 from Theorem 3.5,
we only need to observe that ‖zP ′

n‖0 = ‖z‖0‖P ′
n‖0 = ‖P ′

n‖0/
√

e.

�

Proof of Proposition 3.7. For Pn(z) =
∑n

k=0
akz

k we have
P

′
n(z) =

∑n

k=0
kakz

k−1
, so that

‖Pn‖2

2
=

n
∑

k=0

|ak|2
k + 1

and ‖P ′
n‖2

2
=

n
∑

k=0

k|ak|2.

It follows that

‖P ′
n‖2

2
=

n
∑

k=0

k(k + 1)
|ak|2
k + 1

≤ n(n + 1)

n
∑

k=0

|ak|2
k + 1

= n(n + 1)‖Pn‖2

2
.

The case of equality is verified directly.
�

6.4. Proofs for Section 4.

Proof of Proposition 4.1. Recall that the uniform convergence of Pn to f on

compact subsets of D implies that f is analytic in D, and that P
(k)

n converge
to f

(k) on compact subsets of D for any k ∈ N. In particular,

lim
n→∞

P
(k)

n (0) = f
(k)(0) ∀ k ≥ 0, k ∈ Z.

But P
(k)

n (0) = k!ak, where ak ∈ Z is a corresponding coefficient of Pn. Hence
the result follows.

�

Proof of Proposition 4.2. We have that

‖Pn − Pn−1‖Hp ≤ ‖f − Pn‖Hp + ‖f − Pn−1‖Hp

by the triangle inequality for p ≥ 1, and

‖Pn − Pn−1‖p
Hp ≤ ‖f − Pn‖p

Hp + ‖f − Pn−1‖p
Hp
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for 0 < p < 1. In both cases, (4.1) implies that

lim
n→∞

‖Pn − Pn−1‖Hp = 0, 0 < p ≤ ∞.

If Pn 6≡ Pn−1 then we let akz
k be the lowest nonzero term of Pn−Pn−1, where

|ak| ∈ N. Using the mean value inequality [12], we obtain

‖Pn − Pn−1‖Hp ≥ |ak| ≥ 1, 0 < p ≤ ∞.

This is obviously impossible as n → ∞, so that we have Pn ≡ Pn−1 for all
sufficiently large n ∈ N. Hence the limit function f is also a polynomial with
integer coefficients.

�

Proof of Theorem 4.3. If (4.2) holds then the Pn converge to f on compact
subsets of D by the area mean value inequality:

|f(z) − Pn(z)|p ≤ 1

π(1 − |z|)2

∫∫

|t−z|<1−|z|

|f(t) − Pn(t)|p dA

≤
‖f(t) − Pn(t)‖p

p

(1 − |z|)2
→ 0, n → ∞, z ∈ D.

Hence f has a power series expansion at z = 0 with integer coefficients by
Proposition 4.1.

Conversely, suppose that f ∈ A
p is represented by a power series with

integer coefficients. Since the partial sums of this series converge to f in A
p

norm for 1 < p < ∞ by Theorem 4 [12, p. 31], we can select the sequence Pn

be the sequence of the partial sums.
�

6.5. Proofs for Section 5.

Proof of Proposition 5.1. We apply (2.2) in each variable zj, j = 1, . . . , d,

and use Fubini’s theorem to prove (5.2). Indeed, (2.2) gives that

1

2π

∫

T

log |Pn(z1, . . . , zd)| |dz1| −
k1

2
≤ 1

π

∫

D

log |Pn(z1, . . . , zd)| dA(z1)

≤ 1

2π

∫

T

log |Pn(z1, . . . , zd)| |dz1|

is true for all z2, . . . , zd ∈ C. Integrating the above inequality with respect
to dA(z2)/π, interchanging the order of integration in the lower and upper
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bounds, and applying (2.2) in the variable z2, we obtain

1

(2π)2

∫

T

∫

T

log |Pn(z1, . . . , zd)| |dz1||dz2| −
k1 + k2

2

≤ 1

π2

∫

D

∫

D

log |Pn(z1, . . . , zd)| dA(z1)dA(z2)

≤ 1

(2π)2

∫

T

∫

T

log |Pn(z1, . . . , zd)| |dz1||dz2|

is true for all z3, . . . , zd ∈ C. After carrying out this argument for each variable
zj, we arrive at (5.2) in d steps. When Pn(z1, . . . , zd) 6= 0 in Dd, we have that
‖Pn‖0 = M(Pn) = |a0...0| by the iterative application of Theorem 2.1. If

Pn(z1, . . . , zd) = ak1...kd
z

k1

1
. . . z

kd

d , where k1 + . . . + kd = n, then we evaluate
directly that M(Pn) = |ak1...kd

| and ‖Pn‖0 = |ak1...kd
|e−n/2, because ‖zj‖0 =

e
−1/2

, j = 1, . . . , n.

�

Proof of Example 5.2. (a) Applying (2.1), we have that

1

π2

∫

D

∫

D

log |z1 + z2| dA(z1)dA(z2) =
1

π

∫

D

|z2|2 − 1

2
dA(z2) = −1

4
.

(b) is an immediate consequence of (c).
(c) Let a0...0 = |a0...0|eiφ

. Observe that Pn(z1, . . . , zd) + εe
iφ 6= 0 in Dd for any

ε > 0, because

|Pn(z1, . . . , zd) + εe
iφ| ≥ |a0...0| + ε −

∑

0<k1+...+kd≤n

|ak1...kd
| > 0

by the triangle inequality. We obtain that ‖Pn + εe
iφ‖0 = M(Pn + εe

iφ) =
|a0...0|+ε by the area and contour mean value properties of the (pluri)harmonic
function log |Pn(z1, . . . , zd) + εe

iφ| in Dd, and the result follows by letting
ε → 0.

�
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Bordeaux 13 (2001), 413–420.

[12] P. L. Duren and A. Schuster, Bergman spaces, American Mathematical Society, Prov-

idence, 2004.
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INTEGER TRANSFINITE DIAMETER AND

COMPUTATION OF POLYNOMIALS

GEORGES RHIN AND QIANG WU

Abstract. In this paper we explain how explicit auxiliary functions are

used to compute some interesting families of polynomials. These functions

depend on generalisations of the integer transfinite diameter of some com-

pact sets in C. They give better bounds than the classical ones for the

coefficients of the minimal polynomial of an algebraic integer α.

1. Introduction

1.1. Definitions and notation. Let α be an algebraic integer of degree
d ≥ 2, whose conjugates are α1 = α, α2, . . . , αd, and let

P = b0X
d + b1X

d−1 + · · ·+ bd−1X + bd,

with b0 = 1, be its minimal polynomial. We say that α is totally positive

if all its conjugates are positive real numbers and α is reciprocal if α
−1 is a

conjugate of α. A Salem number is a real algebraic number α > 1 all of whose
conjugates lie in the unit disc |z| ≤ 1 with at least one (and so all the others
but 1/α) of modulus 1. A Perron number is a positive real algebraic integer
α such that max2≤i≤d |αi| < α. For k ≥ 1 we write sk =

∑

1≤i≤d α
k
i . Then s1

is the trace of α and s1/d is the absolute trace of α.

We define the Mahler measure of α (and of P ) by

M(α) = |b0|
d

∏

i=1

max(1, |αi|)

and the house of α by

α = max
1≤i≤d

|αi| .
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278 Computation of polynomials

1.2. The explicit auxiliary functions. Throughout this paper we will use
functions of the following type

f(z) = g(z) −
∑

1≤j≤J

ej log |Qj(z)| , (1)

where the ej are positive real numbers and the integer polynomials Qj belong
to a fixed set S. Also g is a real valued function such that f is harmonic
outside a finite set containing the roots of the polynomials Qj. The numbers
ej are always chosen to get the best auxiliary function, i.e. the one with the
largest minimum. Firstly we explain briefly how we use such an auxiliary
function in the simplest case of the Schur Trace Problem [2]. We want to get
a lower bound of the absolute trace of all totally positive algebraic integers,
apart from a finite number of exceptions. Here we take g(x) = x and m is
the minimum of f(x) for x ≥ 0. Then

∑

1≤i≤d

f(αi) ≥ md (2)

and

s1 ≥ d m +
∑

1≤j≤J

ej log

∣

∣

∣

∣

∣

∏

1≤i≤d

Qj(αi)

∣

∣

∣

∣

∣

.

∏

1≤i≤d Qj(αi) is equal to the resultant of P and Qj and, if we assume that
P does not divide any Qj, this is a nonzero integer. Therefore

s1/d ≥ m

if α is not a root of any polynomial Qj. So, the greater m is, the ‘better’ f

is. The scheme of the computations is the following. With the functions f

we get bounds of sk for k less than K ≥ d which is often much larger than
d (like 2d or 3d). Then we use Newton’s formula which gives by induction
the coefficients bk for 1 ≤ k ≤ d, in order to get a large set of polynomials.
We compute sk for d < k ≤ K and eliminate the polynomial when sk is
not within its bounds. The last computation is done with Pari [14]. The
construction of these auxiliary functions is explained in Section 6. Since the
function f is harmonic, it takes its minimal value on the boundary B of the
domain which contains all the conjugates of α (which is always R or an ellipse
invariant under complex conjugation). Generally, even in the worst case, we
can reduce the number of non-real conjugates that are on the boundary to 1
or 2 (except in the case of Section 5). Hence, we will replace md in (2) by
(d− 1) m0 +m1 (respectively by (d− 2) m0 +2 m1) where m0 is the minimum
of f(x) for a real x inside B and m1 ( ≤ m0) is the minimum of f(z) for z on
B. Therefore the ‘efficiency’ of the auxiliary functions (1) decreases when the
boundary B becomes less ‘flat’ from Sections 2 to 5. Now we describe what
kind of polynomials we are interested in.
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1.3. Some interesting families of polynomials. In Section 2, after a brief
summary giving the best values of m that have been recently obtained for
the absolute trace of totally positive algebraic integers, we explain the use of
this function to compute small Salem numbers. It is not known whether the
Mahler measure of α, when it is greater than 1, is greater than the Mahler
measure of Lehmer’s polynomial. The computation of small Mahler measures
is investigated in Section 3. In Section 4 we explain how to solve a problem
of Colin Maclachlan. Section 5 is devoted to the exploration of the conjecture
of Schinzel and Zassenhaus for the numbers α with small house up to degree
28 and we prove that the smallest Perron numbers satisfy the conjecture of
Lind-Boyd up to degree 23. In Section 6 we explain how to get the auxiliary
functions used in the previous sections.

This paper is an extended version of the lectures given by the authors in
Bristol in April 2006. We take the opportunity to thank the organisers of
the workshop ‘Number Theory and Polynomials’, held at the University of
Bristol, for their warm hospitality.

2. The totally positive algebraic integers

In 1984 C. Smyth [18] gave the good lower bound (1. 771 . . .) with a suit-
able function f of the type (1). The best value for m given by McKee and
Smyth [12] is equal to 1. 77838 and the best known value in April 2006 was
1. 782061, recently improved to 1. 784109. For more details we refer to the
survey by J. Aguirre and J.C. Peral in these proceedings [1]. In these cases
the polynomials Qj were found by an extended heuristic search.

Let α be a Salem number. Then β = α + 1/α + 2 is a totally positive
algebraic integer of degree deg(α)/2. Since all positive powers β

k are totally
positive, it is possible to use Smyth’s function f to get good lower bounds for
sk equal to the sum of the k-th powers of β. V. Flammang, M. Grandcolas
and G. Rhin [7] used this method to verify that the list of Salem numbers
less than 1.3 of degree not greater than 40 given by M. Mossinghoff [13] is
complete. More recently J. McKee and C. Smyth [12] have found the two
Salem numbers of smallest degree (i.e., 20) with trace −2.

3. Algebraic integers with small Mahler measure

For an algebraic integer α, we have M(P ) ≥ 1 and Kronecker’s theorem
implies that M(P ) = 1 if and only if P is a product of cyclotomic polynomials
and a power of X. Lehmer’s question is the following:

Lehmer’s question. Does there exist a positive constant ε such that, if
M(α) > 1, then M(α) ≥ 1 + ε?

The smallest known value for M(α) > 1 has been obtained by D.H. Lehmer
[10] and is M(α) = 1.1762808 . . . given by the polynomial of degree 10:

L(X) = X
10 + X

9 − X
7 − X

6 − X
5 − X

4 − X
3 + X + 1 .
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C. Smyth [17] has proved that, if the algebraic number α 6= 0, 1 is not
reciprocal, then M(α) ≥ θ0, where θ0 = 1.324717 . . . is the smallest Pisot
number which is the real root of X

3 − X − 1. This kind of result had been
proved earlier by Breusch [6] with the smaller constant 1.1796 . . . . P. Voutier
[20] has proved that, if an algebraic number α of degree d > 2 is not a root
of unity, then

M(α) > 1 +
1

4

(

log log d

log d

)

3

. (3)

Exhaustive searches have been made by D. Boyd [3] and [5] and by M. Moss-
inghoff [13] up to degree 20 and to degree 24 respectively to find all the
algebraic numbers α with M(α) < 1. 3 .

Other extensive searches have been made by M. Mossinghoff [13] with

heuristic methods up to degree 180. G. Rhin and J.-M. Sac-Épée [15] used
both a statistical method and a minimisation method to get polynomials
of large degree and small Mahler measure. V. Flammang, G. Rhin and J.-
M. Sac-Épée [9] have computed all the numbers α with M(α) < θ0, d ≤ 36
and M(α) < 1. 31 for d = 38, 40 and then proved that Mossinghoff’s table is
complete up to degree 40.

Because of Smyth’s theorem, an algebraic integer with Mahler measure less
than θ0 is reciprocal. Its minimal polynomial P is of degree 2d:

P = X
2d + c1X

2d−1 + . . . + c1X + 1 =
2d
∏

i=1

(X − αi) .

We may suppose that |αi| ≥ 1 and αd+i = 1/αi for 1 ≤ i ≤ d. We define
the polynomial Q, associated to P by the formula X

d
Q(X + 1/X) = P (X).

Therefore

Q = X
d + b1X

d−1 + . . . + bd−1X + bd

is a monic polynomial of degree d with integer coefficients whose roots are
γi = αi + 1/αi for 1 ≤ i ≤ d.

For Q we have s1 =
∑

1≤i≤d γi =
∑

1≤i≤2d αi. More generally for k > 1

we define γi,k = α
k
i + 1/αk

i and we have sk =
∑

1≤i≤d γi,k =
∑

1≤i≤2d α
k
i . Let

1 < M ≤ θ0 be a fixed bound. If we suppose that 1 ≤ |αi| ≤ M
a with

0 < a ≤ 1 then γi,k lies inside the ellipse

Eka =

{

z = x + iy such that
(

x

A

)

2

+
(

y

B

)

2

≤ 1

}

,

where A = M
ka + M

−ka and B = M
ka − M

−ka
. If M = θ0 the ellipse Eka

is close to the real axis when k is not too large (for k = 1 , B < 0. 57). For
degree 34, the classical bound for the trace is |s1| ≤ 34 and we get |s1| ≤ 4.
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4. A problem of Colin Maclachlan

Here we explain how to solve the following problem of Colin Maclachlan
from the University of Aberdeen. The discrete subgroups of SL(2, C) with
two generators, one of order 2 and one of order 3, are related to the algebraic
integers α of degree d ≥ 2 whose conjugates all lie inside the ellipse:

E =

{

z = x + iy such that
(

x − 1/2

5/2

)2

+
(

y

2

)2

≤ 1

}

,

with two of them conjugate non-real numbers, while all the others are real in
the interval [−1, 2]. We denote by C the set of the minimal polynomials P of
the algebraic integers defined above. It is clear that, if P ∈ C is of degree d,
then (−1)d

P (1 − X) is also in C. So we call C1 the set of polynomials P ∈ C
such that if P (z) = 0 and z is complex then Re z ≤ 1/2. We denote by E1

the set of the elements z of the ellipse E with Re z ≤ 1/2.
To show that C is finite, it suffices to show that C1 is finite. For this, we

use the fact that all the roots of P , but 2, lie in the interval [−1, 2] whose
transfinite diameter is less than 1 (in fact 3/4). Maclachlan proved that
d ≤ 18. If we use the classical bounds for the coefficients of the polynomials
in C1 this would give a set of 1063 elements. The first step is to prove,
with suitable auxiliary functions, that d ≤ 12. For this we use the function
g(z) = − log |z| inside the auxiliary function (1). This gives an upper bound
for |P (0)| which is less than 1 for d > 12. The same kind of functions give
bounds for |P (zi)| where the numbers zi are real or complex algebraic integers
which lie in the real interval [−1, 2] or not too far from it. This gives a rather
‘small set’ of 1000 4-tuples (bd−3, bd−2 bd−1 bd) for d = 8 (respectively 332 for
d = 9). More relations on the last coefficients are given for d = 10, 11 and
12.

Next, functions with g(z) = ±Re(zk) give good bounds for the numbers
sk. V. Flammang and G. Rhin [8] found the 15909 polynomials satisfying the
initial conditions. All these polynomials are of degree at most 10.

5. Algebraic integers of small house and small Perron

numbers

5.1. Algebraic integers of smallest house. Kronecker’s theorem asserts
that α = max1≤i≤d |αi| = 1 if and only if α is a root of unity. We define
m(d) to be the minimum of the houses of the nonzero algebraic integers α of
degree d that are not roots of unity.

A classical problem, see P. Borwein [2], is to study the behaviour of m(d)
when d varies. On the one hand it is clear that m(d) ≤ 21/d since the polyno-
mial X

d−2 is irreducible of degree d. On the other hand there is a conjecture
of A. Schinzel and H. Zassenhaus [19] which asserts that m(d) ≥ 1 + c1/d,
where c1 is a positive constant. Moreover D. Boyd [4] suggests that the best
c1 should be equal to 3

2
log(θ0) where θ0 = 1. 3247 . . . is the smallest Pisot
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number which is the real root of X
3−X−1. This is based on the fact, pointed

out by C. Smyth, that for d = 3k the number α with minimal polynomial

X
3k + X

2k − 1 has α = θ
1/(2k)

0
= θ

3/(2d)

0
and it is expected that this is equal

to m(d) for this degree. We say that an α which gives m(d) is extremal. Boyd
has computed m(d) for d ≤ 12.

The first step of our computations is devoted to the search of the best
bound for m(d) up to d = 28. We first take Boyd’s bound B = (2 + 1/d)1/d

and compute all the numbers α of height 1 with house less than B. Now, we
take for our further computations the bound B as the minimum of the houses
> 1 that we found for a fixed degree d. They are all less than 21/d, bd = ±1.
Here we are in the worst situation since the conjugates of the extremal α

belong to a disk |z| ≤ B. The classical bound gives |s1| ≤ dB but, for d = 28
we get |s1| ≤ 5. We find [16] all extremal numbers α up to degree 28. They
satisfy the conjecture of Schinzel and Zassenhaus with Boyd’s constant. The
search for degree 28 took 6800 hours on a 2.8Ghz PC. Using Smyth’s theorem,
we can deduce the following result:

Let α be a nonzero algebraic integer, not a root of unity, and d = deg(α)
at least 13. Then

α ≥ exp(3 log(d/2)/d 2) . (4)

This gives an improvement of a theorem of E.M. Matveev [11] who proved
the relation (4) only for reciprocal α. We remark that (4) is better than the
inequality that we can deduce from Voutier’s inequality (3) for d ≤ 6380. An-
other remark is the following: for 1 ≤ d ≤ 28, m(d) is given by a polynomial
which is a factor of a polynomial with at most four monomials and of length
at most 4.

5.2. The smallest Perron numbers. Lind and Boyd [4] also made the
following conjecture:
Conjecture(Lind-Boyd). The smallest Perron number of degree d ≥ 2 has
minimal polynomial

X
d − X − 1 if d 6≡ 3, 5 (mod 6) ,

(Xd+2 − X
4 − 1)/(X2 − X + 1) if d ≡ 3 (mod 6) ,

(Xd+2 − X
2 − 1)/(X2 − X + 1) if d ≡ 5 (mod 6) .

For 1 ≤ d ≤ 12 the smallest Perron numbers were computed by Boyd.
Using the same method as in 5.1 the second author [22] computed all Perron
numbers less than the Perron number which is the real root of X

d−X −1 for
12 < d ≤ 22. They all satisfy the Lind-Boyd conjecture. The smallest house
for d = 23 is given by a Perron number, which also satisfies this conjecture. If
the bound B used for the computation is Boyd’s bound then the computation
gives all the numbers α with α < (2 + 1/d)1/d. We give in Table 1 all
the numbers α of degree at most 22 whose house is greater than m(d), less
than 21/d, which are not a Perron number and whose minimal polynomial is
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primitive. They all are also factors of polynomials of length at most equal to
4.

6. Construction of explicit auxiliary functions

6.1. Relations between explicit auxiliary functions and integer trans-

finite diameter. For simplicity we examine the case of small houses which
we dealt with in Section 5. If inside the function (1), with g(z) = Re(z), we
replace the real numbers ej by rational numbers, we may write

f(z) = Re(z) − t

h
log |H(z)| ≥ m,

where H is in Z[X] of degree h and t is a positive real number. We want to
get a function f whose minimum m in |z| ≤ B is as large as possible. That
is to say, we seek a polynomial H ∈ Z[X] such that

sup
|z|≤B

|H(z)|t/h
e
−Re(z) ≤ e

−m
.

Now, if we suppose that t is fixed, say t = 1, it is clear that we need an
effective upper bound for the quantity

tZ,φ(|z| ≤ B) = lim inf
h≥1,h→∞

inf
H∈Z[X],deg H=h

sup
|z|≤B

|H(z)|t/h
φ(z),

where we use the weight φ(z) = e
−Re(z). To get an upper bound for this

quantity, it suffices to get an explicit polynomial H ∈ Z[X] and then to use
the sequence of successive powers of H.

This is a generalisation of the integer transfinite diameter. For any h ≥ 1
we say that a polynomial H (not always unique) is an Integer Chebyshev

Polynomial if the quantity sup|z|≤B |H(z)|t/h
φ(z) is minimum. With Wu’s

algorithm [21], we compute polynomials H of degree less than 30 or 40 and
take their irreducible factors as polynomials Qj. We start with the polynomial
X − 1, get the best e1 and take t = e1. After computing J polynomials, we
optimise the numbers ej as explained in the next subsection. This gives us a
new number t, and we continue by induction to get J + 1 polynomials.

6.2. Optimization of the numbers ej. We give a brief outline of the
semi-infinite linear programming method introduced into number theory by
C.J. Smyth. More details can be found in [9]. To optimize the numbers ej,
we first put the coefficient of Re(z) equal to e0 = 1. We take a set X1 of ‘well
distributed’ points of modulus equal to B. By linear programming, we get the
maximum µ of the minimum of a finite set of linear forms whose coefficients
are Re(zi) and − log |Qj(zi)| for 1 ≤ j ≤ J for any zi in X1. This gives an
auxiliary function f which has a minimum m > µ. We add to X1 a selection
of the points of |z| = B where f has a local minimum. With this new set X2

we get another value for m and µ. We stop the process when the integer part
of m and µ coincide.
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d polynomial P (X) house

3 X
3 + X

2 − 1 1. 15096392. . .

5 (X5 + X
3 + X − 1) 1. 13925029. . .

5 (X6 + X
2 − X − 1)/Φ1 1. 14150997. . .

6 (X8 − X + 1)/Φ6 1. 09373169. . .

7 (X11 − X
3 + X

2 − 1)/(Φ1Φ2Φ6) 1. 10154059. . .

7 (X8 − X
4 − X + 1)/Φ1 1. 10335536. . .

8 (X10 + X
5 − X + 1)/Φ4 1. 08370432. . .

9 (X11 + X − 1)/Φ6 1. 06715088. . .

12 (X14 − X + 1)/Φ6 1. 05218083. . .

14 (X17 − X
10 + X

3 − 1)/(Φ1Φ4) 1. 05050388. . .

15 (X17 + X − 1)/Φ6 1. 04263049. . .

16 (X19 − X
10 + X − 1)/(Φ1Φ4) 1. 04163090. . .

18 (X20 − X + 1)/Φ6 1. 03602095. . .

21 (X23 + X − 1)/Φ6 1. 03712124. . .

Table 1. List of α of degree d and minimal polynomial P (X)
whose house is greater than m(d), less than 21/d, which is not
a Perron number and whose minimal polynomial is primitive.
P is written as a quotient with numerator a trinomial or a
quadrinomial. The denominator is a product of at most three
cyclotomic polynomials: Φ1 = X −1, Φ2 = X +1, Φ4 = X

2 +1
and Φ6 = X

2 − X + 1.

6.3. Further refinements. Refinements of the method are needed when we
want to decrease the computing time. Very often, when the bounds for the
numbers sk do not grow too quickly with k, we get, with more sophisticated
functions g, relations between sk and s2k. We generally use some thousands
of distinct functions. Most of them are optimized almost automatically when
we are given the polynomials Qj.
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SMOOTH DIVISORS OF POLYNOMIALS

EIRA J. SCOURFIELD

Abstract. Let f be a monic polynomial over the integers that is not

necessarily irreducible but has no repeated factor, and let ω(m) denote the

number of solutions of the congruence f(n) ≡ 0 (mod m). We establish an

asymptotic formula with a good error term for
∑

m≤x
ω(m), and derive

asymptotic formulae for the number of positive divisors m ≤ x of f(n)

summed over n ≤ x and, using a result of Hanrot, Tenenbaum and Wu,

for the number of these divisors m with no large prime factors.

1. Introduction

Let {fi : i = 1, ..., l} be a set of l distinct monic irreducible polynomials
over Z, where fi has degree ki ≥ 2 (i = 1, ..., l). Let

f =

l∏

i=1

fi, (1.1)

so f is also monic and has degree k =
l∑

i=1

ki. We remark that f being monic

is not crucial for our results, but is assumed for convenience.
The motivation for writing this paper goes back to the old problem of

estimating, for f irreducible over Z and of degree at least 2, the number
d(f(n)) of divisors of f(n) summed over n ≤ x. A key result is due to Paul
Erdős [2] who, by a complicated elementary method, showed that

x log x �
∑

n≤x

d(f(n)) � x log x .

When f is an irreducible quadratic polynomial, an asymptotic formula for∑
n≤x

d(f(n)) was established and studied further in [6], [11], [12], [13] and [17],

but, to the author’s knowledge, no corresponding asymptotic formula has so
far been derived in the case when f has degree at least 3. However, if we
restrict ourselves to divisors m ≤ x of f(n) with no prime factor exceeding y

where y satisfies (1.5) below, we can obtain, for l ≥ 1, the asymptotic formulae
given in Theorem 4 below. To establish this result, we need estimates for

2000 Mathematics Subject Classification. Primary: 11N37; Secondary: 11N64, 11N25.

Key words and phrases. Polynomial congruences, divisors of polynomials, smooth divi-

sors, generalized Dickman function.
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some sums involving the number ω(m) of solutions n (1 ≤ n ≤ m) of the
congruence

f(n) ≡ 0 (mod m) ,

given in Theorems 1, 2, and 3. These are of interest in their own right, and are
considerably stronger than those required to derive Theorem 4. The results
in Theorem 2 are special cases of very general results in [3].

Our first objective is to establish a good asymptotic formula for

A(x) :=
∑

m≤x

ω(m) . (1.2)

When l = 1, we see from Theorem 1 below that A(x)/x tends to a positive
limit as x → ∞, and so ω(m) has a mean value in this case. Several authors
have written papers giving a very good insight into the problem of estimating
the mean value (when this exists) of a multiplicative function, but the condi-
tions imposed are not always satisfied by ω(m), even when l = 1. E. Wirsing’s
important memoir [26] on multiplicative functions can be applied to obtain
the best estimate for A(x), for any fixed l ≥ 1, available at that time. From
Satz 1.1 of that paper it follows that as x → ∞

A(x) ∼ e
−γl

(l − 1)!

x

log x

∏

p≤x

(
1 +

∞∑

α=1

ω(pα)p−α

)
,

where p denotes a rational prime. The main term of this asymptotic formula
can then be determined by evaluating the product using the estimate

∑

p≤x

ω(p) = l li(x) + O
(
x exp

(
−(log x)

3

5
−ε
))

(a consequence of the prime ideal theorem and the sentence after (2.4) below).
An asymptotic formula for A(x) with an explicit error term follows in the case
l = 1 from Lemme 2.1 of [22], and for l ≥ 1 from Lemme 3.9 of [21]; see also
(1.10) and (1.12) of [3], where the error term in a more general situation is
of the form O(x1−θ) with θ < 1/2 described explicitly. Theorem 1 below
improves this for A(x) by giving a precise value for θ that to the author’s
knowledge is the best available up to now.

Theorem 1. As x → ∞,

A(x) = xPl−1(log x) + O(x1−θ) (1.3)

where Pl−1 is a polynomial of degree l− 1 and with positive leading coefficient

B/(l − 1)! with B given by (3.13), and θ is any fixed number satisfying

0 < θ < min(1

2
,

1

∆l

), where ∆l is given by (3.1) below.

We prove this result in section 3 by induction on the number of factors in
(1.1) using the generating function associated with A(x) which is investigated
in section 2. The definition for ∆l that we use requires some notation. If
ki ≥ 3 for all i, we could use the slightly larger value ∆l = 1

2
(k1 + ... + kl + l).
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Alternatively we could obtain a result of the form (1.3) by using analytic
methods and the estimates for the Dedekind zeta-function on the line σ = 1

2

given in [4] and credited in [5] to Kaufman, see [8]. However the value of θ

that we were able to derive by this approach is smaller than that described
in Theorem 1.

From Theorem 1 we deduce

Corollary 1. As x → ∞,

C(x) :=
∑

m≤x

ω(m)

m
= Pl(log x) + O(x−θ) , (1.4)

where Pl is a polynomial of degree l and with positive leading coefficient B/l!.

Denote by P (m) the greatest prime factor of an integer m ≥ 2 and let
P (1) = 1. We require information on the quantities A(x, y) and C(x, y)
obtained by imposing the additional condition P (m) ≤ y on each of the
terms in the sums in (1.2) and (1.4). In order to state the next two theorems,
we need some more notation. For any ε > 0, define the region Hε by

Hε : (log
2
x)

5

3
+ε ≤ log y ≤ log x, x ≥ x0(ε), (1.5)

where, throughout this paper, log
2
x = log(log x) for x > e. Let

Lε(y) := exp
(
(log y)

3

5
−ε
)
. (1.6)

Define the function ρl(u), a generalization of the Dickman function ρ(u), by
the differential-difference equation

ρl(u) = 0 (u ≤ 0) , ρl(u) = ul−1

(l−1)!
(0 < u ≤ 1) ,

uρ
′
l(u) = (l − 1)ρl(u) − lρl(u − 1) (u > 1) .



 (1.7)

When l = 1 this reduces to ρ(u) (except that ρ(0) is usually defined to be 1).
Define zl(u) by the differential - difference equation

zl(u) = 0 (u < 0) , zl(u) = 1 (0 ≤ u ≤ 1) ,

uz
′
l(u) = −lzl(u − 1) (u > 1) .



 (1.8)

We observe (see the sentence after (4.10)) that when u 6= 0

zl(u) = ρ
(l−1)

l (u) . (1.9)

Throughout this paper we put u = log x

log y
> 1. Given n ∈ N, let In denote the

following union of intervals:

In =
n⋃

r=1

[r + εn,r(y), r + 1] ∪ [n + 1,∞) (1.10)
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where

εn,r(y) = θ
−1(n + 1 − r)

log
2
y

log y
(1 ≤ r ≤ n) . (1.11)

The results of the following Theorem are special cases of the main results in
[3]; see Theorem 1.2 for (i) and Theorem 2.3 for (ii).

Theorem 2. (i) In the region Hε

A(x, y) :=
∑

m≤x
P (m)≤y

ω(m) = x

(
1 + O

(
1

Lε(y)

))∫ u

0−

zl(u − v)d

(
A(yv)

yv

)
.

(1.12)
(ii) Let n ≥ 1 be a fixed integer and assume that u ∈ In+1−l when n ≥ l.

Then in the region Hε

A(x, y) = x(log y)l−1

{
n∑

r=0

arρ
(r)

l (u − 0)(log y)−r

+O

(
ρl(u)

(
log(u+1)

log y

)n+1
)}

,

(1.13)

where the ar are given by (2.28) and (2.31).

For sufficiently large u, we see from (4.4) and (4.20) that the terms in the
sum of (1.13) decrease as the power of log y decreases. Thus as u → ∞

A(x, y) ∼ a0x(log y)l−1
ρl(u) (1.14)

where a0 = B given by (3.13). For sufficiently large u the O-term in (1.13) is

O
(∣∣ρ(n+1)

l (u)
∣∣(log y)−n−1

)
by (4.2).

Next we state the corresponding results for C(x, y). Let Gε denote the
region given by

Gε : (log x)
5

8
+ε ≤ log y ≤ log x, x ≥ x0(ε) . (1.15)

Theorem 3. (i) In the region Hε

C(x, y) :=
∑

m≤x
P (m)≤y

ω(m)

m
=

(
1 + O

(
1

Lε(y)

))∫ u

0−

zl(u − v)d(C(yv)). (1.16)

(ii) Let n ≥ 1 be a fixed integer and assume that u ∈ In−l when n > l.

Then in the region Hε

C(x, y) = (log y)l
{

b0

∫ u

0
ρl(v)dv +

n∑
r=1

brρ
(r−1)

l (u − 0)(log y)−r

+O
(
ρl(u) (log(u+1))

n

(log y)n+1

)}
+ O

(
1

Lε(y)

) (1.17)

where the br are given by (2.29) and (2.31) and satisfy b0 = a0, br = ar +ar−1

(r ≥ 1). In the region Gε the error term O(1/Lε(y)) can be removed. As

u → ∞,
∫ u

0
ρl(v)dv = e

γl + O(ρl(u)/ logu) where γ is Euler’s constant.



290 Smooth divisors of polynomials

We observe that as u → ∞ in the region Hε

C(x, y) ∼ e
γl

b0(log y)l

where b0 = B given by (3.13). For sufficiently large u the first O-term in

(1.17) is O(|ρ(n)

l (u)|(log y)−n−1) by (4.2).
On receiving a draft of this paper, Professor G. Tenenbaum e-mailed [24]

the author to describe how partial summation techniques can be applied to
deduce from the main theorems in [3] results of the same type as those in
Theorem 3 above, but valid for a general class of non-negative multiplica-
tive functions f studied in [3]. Moreover he is able to eliminate the error
term O(1/Lε(y)) in the asymptotic expansion analogous to (1.17) above in
the region Hε by introducing the function F (y) =

∑
P (n)≤y f(n)/n into the

argument.
To illustrate an alternative approach, we give in section 5 a direct proof

of Theorem 3 that is independent of Theorem 2. We follow the same broad
strategy that is standard in this type of problem, but there are differences and
simplifications in its implementation. These arise when we express C(x, y)
as an integral of a function with a simple pole at s = 0, and take the line of
integration to be of the form σ = κ > 0; taking the line of integration to the
left of σ = 0 does not seem to improve the result, unlike the corresponding
situation for A(x, y) and the more general sums studied in [3]. Factors of the
integrand include the generating function G(s + 1) =

∑∞
m=1

ω(m)m−1−s for
C(x) and the Laplace transform ρ̂l(s) of ρl(u) defined in (1.7), and we find
that we only need an estimate for ρ̂l(s) for s = κ+ it for |t| large. In contrast,
for A(x, y) the analogous integrand is analytic at the critical point s = 1 but
the corresponding integral is taken along a line of integration to the left of
σ = 1, and rather precise information on ρl(u) and on ρ̂l(s) when σ = −ξ < 0
is required, where ξ has a specific standard value; see [3] for the details when
A(x, y) is replaced by a general sum of this type.

We remark that our proofs of Theorems 1 and 3 are valid when ω(m) is
replaced by any multiplicative function with an associated generating function
of the form

G(s) = H(s)

l∏

i=1

ζKi
(s)νi , (1.18)

where H(s) is analytic and bounded in σ >
1

2
, the Ki are distinct num-

ber fields, ζKi
(s) is the associated Dedekind zeta-function, and each νi ∈ N

(whereas in (2.20) each νi = 1). In [3] the authors consider a more general
situation for a multiplicative function with generating function of the form
(1.18) but with the νi real numbers such that

∑l

i=1
νi > 0, where H(s) sat-

isfies certain conditions. As mentioned above, in his e-mails [24] Tenenbaum
described how to obtain a generalisation of Theorem 3 from these results and
partial summation. Furthermore in section 1.4 of [3] the authors describe a
generalization of their work that includes the problem of investigating A(x, y)
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when the polynomial f in (1.1) is not squarefree, and they give explicitly the
corresponding generating function and the generalizations of the Dickman
function required.

We turn now to the problem discussed at the beginning of this paper. Let

Dl(x, y) =
∑

n≤x

# {m : m ≤ x, P (m) ≤ y, m | f(n)} (1.19)

and Dl(x) = Dl(x, x). Since m | f(n) if and only if n lies in one of ω(m)
residue classes modulo m,

Dl(x, y) = xC(x, y) + O
(
A(x, y)

)
, (1.20)

with a corresponding expression for Dl(x). Hence from Theorems 1, 2 and 3
and equation (1.4) we deduce

Theorem 4. (i) We have

Dl(x) =
B

l!
x(log x)l + O

(
x(log x)l−1

)
(1.21)

where B is given by (3.13).

(ii) In the region Hε

Dl(x, y) = Bx(log y)l
∫ u

0
ρl(v)dv + O

(
xρl(u)(log y)l−1 + x

Lε(y)

)

∼ Be
γl

x(log y)l
(1.22)

as u → ∞. In the region Gε the error term in (1.22) is O(xρl(u)(log y)l−1).

The related problems that one would really like to be able to solve are those
of obtaining an unconditional asymptotic formula for

Ψ(f ; x, y) = #{1 ≤ n ≤ x : P (f(n)) ≤ y}
for (x, y) in a suitable region, as well as for

∑
n≤x

d(f(n)) when f is irreducible

over Z and has degree at least 3, but these seem unattainable at present.
However, assuming a certain hypothesis that is a quantitive version of Schinzel
and Sierpinski’s Hypothesis H, G. Martin in a very long technical paper [10]

has derived an asymptotic formula for Ψ(f ; x, x
1

u ) that is uniform for u in a
given range and with some uniformity in the coefficients of f .

The plan of the current paper is as follows. In Section 2 we consider the
properties of ω(m) and of the Dedekind zeta-function that we need and set
up the generating function that is used in the proof of Theorem 1 in Section
3. In Section 4 we look at properties of the generalized Dickman function
ρl(u) and its Laplace transform. Theorem 3 is proved in section 5.
Acknowledgements. The author is grateful to the referee for a careful reading
of this paper and for suggestions that clarified its exposition. She thanks
Professor Gérald Tenenbaum for informing her that the results in [3], then
being prepared, were relevant to the work in her early draft of this paper,
for his e-mails [24] concerning deriving a generalization of Theorem 3 from
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the results of [3], and for his encouragement. She also thanks Professor Ram
Murty for a helpful conversation that led to a better error term in Theorem
1 in the case l = 1.

2. Preliminaries

2.1. Properties of ω(m). For i = 1, ..., l, recall that fi is an irreducible
monic polynomial over Z of degree ki ≥ 2 and that fi 6= fj if i 6= j. As in

(1.1), f =
l∏

i=1

fi so f is also monic and has degree

k =

l∑

i=1

ki . (2.1)

Without loss of generality, we assume

k1 ≥ k2 ≥ ... ≥ kl ≥ 2 . (2.2)

Denote the discriminant of fi by Di and put

D =
l∏

i=1

Di . (2.3)

Since the fi are distinct, fi and fj are coprime if i 6= j. Hence there exist
polynomials ui, uj ∈ Z[t] and ei,j ∈ Z\ {0} such that

uifi + ujfj = ei,j . (2.4)

It follows that if p is a prime with p - ei,j then the congruences

fi(n) ≡ 0 (mod p) , fj(n) ≡ 0 (mod p)

have no common solution. Let

e =
∏

1≤i<j≤l

ei,j . (2.5)

Define ωi(m), ω(m) by

ωi(m) = # {n ∈ Zm : fi(n) ≡ 0 (mod m)} , i = 1, ..., l , (2.6)

ω(m) = # {n ∈ Zm : f(n) ≡ 0 (mod m)} . (2.7)

It follows from above that if (m, e) = 1 then

ω(m) =
l∑

i=1

ωi(m) .

In particular, if p - e, for any α ≥ 1

ω(pα) =

l∑

i=1

ωi(p
α) .
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The restriction that fi is monic does not affect the value of ωi(p
α), except

for a finite number of primes p. For if f
∗
i has leading coefficient a > 0 and

degree ki, then
a

ki−1
f
∗
i (n) = fi(an) (2.8)

for some monic polynomial fi of degree ki, so if p - a, then ω
∗
i (p

α) = ωi(p
α).

The results in the following lemma are well known:

Lemma 1. (i) The functions ω(m) and ωi(m) are multiplicative.

(ii) If p
βi ‖ Di, then for all α ≥ 2βi + 1

ωi(p
α) = ωi(p

2βi+1) . (2.9)

In particular if p - Di, then ωi(p
α) = ωi(p) for all α ≥ 1.

(iii) We have ωi(p) ≤ min(ki, p) for all primes p, and

ωi(p
α) � 1 for all primes p and α ≥ 1.

For (ii), see for example Theorem 53, p. 89, in [14], (i) follows from the
Chinese Remainder Theorem, and (iii) is a consequence of (ii). From Theorem
54 of [14], ωi(p

α) ≤ kiD
2

i .

Corollary 2. If p - De, for all α ≥ 1

ω(pα) =

l∑

i=1

ωi(p) = ω(p) , (2.10)

so if p ≥ k1, ω(pα) ≤ k ≤ lk1.

We remark that ωi(p) is the number of linear factors in the factorization of
fi over Zp.

2.2. Related algebraic number fields. With fi as above, let θi be an
algebraic integer satisfying fi(θi) = 0, and let Ki be the algebraic number
field given by Ki = Q(θi), and Oi be the ring of integers of Ki (i = 1, ..., l).
Denote the discriminant of Ki by di, and let oi = [Oi : Z[θi]], the index of the
additive group Z[θi] in Oi. Then Di = dio

2

i ; see Proposition 4.4.4 of [1].
If p is a rational prime with p - di, then p is unramified in Ki, and its

factorization into prime ideals of Oi takes the form

p =

r∏

j=1

pi,j

where pi,j, j = 1, ..., r, are distinct prime ideals of Oi. Moreover

N (pi,j) = p
gi,j where

r∑

j=1

gi,j = ki ;

see Theorems 4.8.3, 4.8.5 and 4.8.8 of [1]. We can now connect this factor-
ization of p in Oi with ωi(p) when p - Di using Theorems 4.8.13 and 4.8.5 in
[1]:
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Lemma 2. Suppose p - Di. Write

fi(n) ≡
r∏

j=1

fi,j(n) (mod p) , (2.11)

where the fi,j are irreducible and monic over Zp. Then, with appropriate

ordering, the degree of fi,j is gi,j. Hence ωi(p) is the number of exponents gi,j

equal to 1, i.e. the number of pi,j dividing p with norm equal to p.

2.3. The generating function. Throughout this paper, we write s = σ+it.
Let

G(s) =

∞∑

m=1

ω(m)m−s ( σ > 1) (2.12)

and p0 be a fixed integer satisfying

p0 > k2k+2
, p | De ⇒ p ≤ p0 .

Lemma 3. For σ > 1

G(s) =
∏

p>p0

(1 − p
−s)−ω(p)

H0(s) , (2.13)

where H0(s) is analytic and can be written as an absolutely convergent product

over primes in σ >
1

2
, and H0(1) 6= 0.

Proof. By Lemma 1(i), in σ > 1

G(s) =
∏

p

(
1 +

∞∑

α=1

ω(pα)p−αs

)
.

When p > p0, so p - De, we have by Lemma 1(ii) that ω(pα) = ω(p) for all
α ≥ 1. Hence for p > p0 and ω(p) > 0

(
1 +

∞∑
α=1

ω(pα)p−αs

)
(1 − p

−s)ω(p)

=

(
1 + ω(p)

∞∑
α=1

p
−αs

)(
ω(p)∑
β=0

(
ω(p)

β

)
(−p

−s)β

)

= 1 +
∞∑

α=2

a(pα)p−αs

where, for α > ω(p),

a(pα) = ω(p)

ω(p)∑

β=0

(
ω(p)

β

)
(−1)β = ω(p)(1 − 1)ω(p) = 0 ,

and, for 2 ≤ α ≤ ω(p),

a(pα) =

(
ω(p)

α

)
(−1)α + ω(p)

α−1∑

β=0

(
ω(p)

β

)
(−1)β

.
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In the latter case, when ω(p) > 0,

|a(pα)| ≤ ω(p)

ω(p)∑

β=0

(
ω(p)

β

)
= ω(p)2ω(p) ≤ k2k

, (2.14)

since ω(p) ≤ k. Moreover, since p > p0 > 2, for σ >
1

2
we have

∣∣∣∣∣∣

ω(p)∑

α=2

a(pα)p−αs

∣∣∣∣∣∣
< k2k

∞∑

α=2

p
−ασ

< k2k p
−2σ

1 − 2−σ
< 4k2k

p
−1

< 1 ,

so for p > p0, σ >
1

2

1 +

ω(p)∑

α=2

a(pα)p−αs 6= 0 . (2.15)

It follows that for σ > 1

G(s) =
∏

p>p0






1 +

ω(p)∑

α=2

a(pα)p−αs


(1 − p

−s
)−ω(p)




∏

p≤p0

(
1 +

∞∑

α=1

ω(pα)p−αs

)
.

When p ≤ p0, ω(pα) ≤
l∏

j=1

ωj(p
α) � 1, so for σ ≥ 1

2

∣∣∣∣∣
∏

p≤p0

(
1 +

∞∑

α=1

ω(pα)p−αs

)∣∣∣∣∣ ≤
∏

p≤p0

(
1 +

∞∑

α=1

ω(pα)p−α/2

)
� 1 .

Hence

G(s) =
∏

p>p0

(
1 − p

−s
)−ω(p)

H0(s) , (2.16)

where

H0(s) =
∏

p>p0


1 +

ω(p)∑

α=2

a(pα)p−αs


 ∏

p≤p0

(
1 +

∞∑

α=1

ω(pα)p−αs

)
, (2.17)

which is analytic in σ >
1

2
and is an absolutely convergent product there.

Since for σ = 1 a typical term with p > p0 > k2k+2 in H0(s) is

� 1 − k2k+2
p
−2

> 1 − p
−1

0
> 0,

and the terms with p ≤ p0 and s = 1 are clearly positive, we have H0(1) 6= 0
as required. �

We now use the information in Lemma 2 to express G(s) in terms of
Dedekind zeta-functions. For σ > 1, define

ζKi
(s) =

∑

a

(
N(a)

)−s
=
∏

p

(
1 −

(
N(p)

)−s
)−1

, (2.18)
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where a runs over the ideals and p the prime ideals of Oi. By Lemma 2, N(p)
is a rational prime p for exactly ωi(p) prime ideals and otherwise N(p) is a
higher power of a prime p. Hence for σ > 1 we can write

ζKi
(s) =

∏

p>p0

(1−p
−s)−ωi(p)

∏

p

N(p)=pg ,g≥2, p>p0

(1−p
−gs)−1

∏

p

N(p)=pg,g≥1, p≤p0

(1−p
−gs)−1

where we know that g ≤ ki holds. The second product is absolutely conver-
gent and analytic in σ >

1

2
, the third product is finite, bounded and non-zero

in σ ≥ δ > 0, and hence

ζKi
(s) =

∏

p>p0

(1 − p
−s)−ωi(p)

Hi(s) (2.19)

where Hi(s) is an absolutely convergent product, analytic and non-zero in
σ >

1

2
. Hence we have:

Corollary 3. For σ > 1

G(s) =

l∏

i=1

(
ζKi(s)

(
Hi(s)

)−1
)
H0(s) = H(s)

l∏

i=1

ζKi
(s) , (2.20)

where, for σ >
1

2
, H(s) is an absolutely convergent product over primes and

is analytic, and where H(1) 6= 0.

A more general formula of this type was established in the proof of Lemme
3.9 in [21].

We remark that if we had started with polynomials f
∗
i that were not all

monic, then from (2.8) it would follow that the only change would be in the
finite product H0(s), assuming that p0 exceeds the magnitude of the leading
coefficient of f

∗, and hence in H(s) and its value at s = 1. This just changes
the constants in our theorems.

Next we state some properties of ζK(s) for K an algebraic number field of
degree k that we use later. First we need some definitions. Let

λ = 2q+r
π

r
Rhm

−1 |∆|−
1

2 ,

where q is the number of real and r is the number of complex conjugate pairs
of monomorphisms K → C, m is the number of roots of unity in K and R, h,
∆ denote the regulator, class number, discriminant of K, respectively. Define



Eira J. Scourfield 297

α, β according to the following table:

k α β

k = 2 50

73

315

146

3 ≤ k ≤ 6 2

k
− 8

k(5k+2)

10

5k+2

k ≥ 7 2

k
− 3

2k2

2

k

(2.21)

Lemma 4. (i) The function ζK(s) has a simple pole at s = 1 with residue λ

and is analytic on C otherwise.

(ii) Let j(m) = # {a ∈ O : N(a) = m}; for σ > 1

ζK(s) =
∞∑

m=1

j(m)m−s
. (2.22)

Also

S(x) :=
∑

m≤x

j(m) = λx + O
(
x

1−α(log x)β
)
. (2.23)

(iii) There exist positive constants c, t0 such that ζK(s) 6= 0 for

σ ≥ 1 − c(log |t|)−2/3(log
2
|t|)−1/3 (|t| ≥ t0) , (2.24)

σ ≥ 1 − c(log t0)
−2/3(log

2
t0)

−1/3 (|t| ≤ t0) . (2.25)

(iv) In the region (2.24)

ζK(s) �
(
log |t|

)2/3(
log

2
|t|
)

(2.26)

and

ζ
′

K(s)

ζK(s)
�
(
log |t|

)
2/3
(
log

2
|t|
)
4/3

. (2.27)

Part (i) is well known. For part (ii), see [7] when k = 2 and [15] for k ≥ 3,
and for part (iii) see [20]. Part (iv) is given by Lemmas 2.6 and 2.8 of [18].
In standard text books (2.23) is established with α = 1

k
, β = 0, and for k ≥ 3

E. Landau obtained in [9] α = 2

k+1
, β = 0.

Corollary 4. (i) The function sG(s + 1)/(s + 1) has a pole of order l − 1 at

s = 0.
(ii) The function G(s + 1) has a pole of order l at s = 0.
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This follows from (2.20) and Lemma 4(i). Hence we can expand both
functions in a Laurent series about s = 0; for 0 < |s| < δ for a suitable δ > 0
we have

s

s + 1
G(s + 1) =

∞∑

r=0

ars
r−(l−1)

, (2.28)

G(s + 1) =

∞∑

r=0

brs
r−l

. (2.29)

We deduce that b0 = a0, br = ar + ar−1 for r ≥ 1. By using (2.12) and the
definitions of A(x) and C(x) we find that for σ > 0

G(s + 1) =
s + 1

s

∫ ∞

1−

v
−s

d

(
A(v)

v

)
=

∫ ∞

1−

v
−s

d
(
C(v)

)
. (2.30)

It follows from (1.3) and (1.4) that

ar = P
(l−1−r)

l−1
(0) (0 ≤ r ≤ l − 1) , br = P

(l−r)

l (0) (0 ≤ r ≤ l) , (2.31)

and in particular a0 = B = b0, where B is given by (3.13). Hence

Pl−1(log x) =
l−1∑

r=0

ar

(log x)l−1−r

(l − 1 − r)!
,

Pl(log x) =

l∑

r=0

br

(log x)l−r

(l − r)!
= a0

(log x)l

l!
+

l∑

r=1

(ar + ar−1)
(log x)l−r

(l − r)!
.

Moreover, by (2.30), (1.3) and (1.4), for r ≥ 1

ar+l−1 =
(−1)r−1

(r − 1)!

∫ ∞

1−

(
A(v) − vPl−1(log v)

)
(log v)r−1

v
−2

dv ,

br+l =
(−1)r−1

(r − 1)!

∫ ∞

1−

(
C(v) − Pl(log v)

)
(log v)r−1

v
−1

dv . (2.32)

From Perron’s formula, for x 6∈ N and κ > 0 we see that

A(x) =
x

2πi

∫ κ+i∞

κ−i∞

sG(s + 1)

s + 1

x
s

s
ds ;

the residue of the integrand at its pole of order l at s = 0 is Pl−1(log x).
Similarly

C(x) =
1

2πi

∫ κ+i∞

κ−i∞

G(s + 1)
x

s

s
ds ,

and Pl(log x) is the residue of this integrand at its pole of order l+1 at s = 0.
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3. Proof of Theorem 1

As in section 2.2, for each i ≥ 1 the algebraic number field Ki is associated
with the polynomial fi and has degree ki. The corresponding Dedekind zeta-
function ζKi

(s) has residue λi at its simple pole at s = 1. Define the quantities
ji(m), αi, βi analogously to those defined for K in (2.22) and (2.21). For i ≥ 1
let

∆i =
1

α1

+ ... +
1

αi

, δi = β1 + .. + βi + max(0, i − 2) . (3.1)

We observe that ∆i > 2 except when i = 1 and k1 = 2 or 3.
Our proof of Theorem 1 depends on the following lemma that we establish

by induction on i.

Lemma 5. To each i ≥ 1 there corresponds a polynomial Pi−1 of degree i− 1
and with leading coefficient

λ1...λi

(i − 1)!
(3.2)

such that

Ai(x) :=
∑

m1...mi≤x

i∏

r=1

jr(mr) = xPi−1(log x) + O
(
x

1− 1

∆i (log x)δi

)
. (3.3)

Proof (by induction on i). The case i = 1 follows from (2.23). Assume the
result holds for some i ≥ 1; for convenience write

m = m1 . . .mi , a(m) =
i∏

r=1

jr(mr) ≥ 0 .

Consider Ai+1(x). Suppose X, Y (to be chosen later) satisfy XY = x, X,
Y → ∞ as x → ∞. By a standard hyperbolic argument

Ai+1(x) =
∑

mn≤x

a(m)ji+1(n)

=
∑

m≤X

a(m)Si+1(
x

m
) +

∑

n≤Y

ji+1(n)Ai(
x

n
)

−Ai(X)Si+1(Y )

=
∑

1

+
∑

2

−Ai(X)Si+1(Y ) , (3.4)

say. By (2.23)

∑
1

= λi+1x

∑

m≤X

a(m)

m
+ O

(
x

1−αi+1(log x)βi+1

∑

m≤X

a(m)

m1−αi+1

)
. (3.5)
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Let

Pi(log X) =

∫ X

1−

Pi−1(log v)v−1
dv , (3.6)

Ci =

∫ ∞

1−

(
Ai(v) − vPi−1(log v)

)
v
−2

dv ; (3.7)

then Pi is a polynomial of degree i and with leading coefficient λ1 . . . λi/i!
on using (3.2), and Ci is an absolutely convergent integral by (3.3). Using
partial summation, we find that

∑

m≤X

a(m)

m
= Pi(log X) + Pi−1(log X) + Ci + O

(
X

− 1

∆i (log X)δi

)
,

∑

m≤X

a(m)

m1−αi+1

� X
αi+1(log X)i−1

.

Substituting these estimates in (3.5), we obtain
∑

1
= λi+1x

(
Pi(log X) + Pi−1(log X) + Ci

)

+O
(
xX

− 1

∆i (log X)δi + xY
−αi+1(log x)βi+1+(i−1)

) (3.8)

since XY = x, X < x.
Similarly by our hypothesis (3.3)

∑
2

= x

∑

n≤Y

ji+1(n)

n
Pi−1(log

x

n
) + O

(
x

1− 1

∆i (log x)δi

∑

n≤Y

ji+1(n)n
−1+

1

∆i

)
.

(3.9)
Let

Qi−1(log x) =

∫ ∞

1−

(
Si+1(v) − λi+1v

)(
Pi−1(log

x

v
) + P

′
i−1

(log
x

v
)
)
v
−2

dv ,

which by (2.23) is a polynomial in log x of degree i − 1 since the coefficients
are absolutely convergent integrals. By partial summation and (2.23) and
(3.6)

∑

n≤Y

ji+1(n)

n
Pi−1(log

x

n
) = λi+1

(
Pi(log x) − Pi(log X) + Pi−1(log x)

)

+Qi−1(log x) + O
(
Y

−αi+1(log x)βi+1+(i−1)
)
,

∑

n≤Y

ji+1(n)n
−1+

1

∆i � Y
1

∆i .

Hence substituting in (3.9) and using XY = x again
∑

2

= λi+1x
(
Pi(log x) − Pi(log X) + Pi−1(log x)

)
+ xQi−1(log x)

+O
(
xY

−αi+1(log x)βi+1+(i−1) + xX
− 1

∆i (log x)δi+1

)
. (3.10)
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By (2.23) and (3.3), since XY = x,

Ai(X)Si+1(Y ) = λi+1xPi−1(log X)

+O
(
xY

−αi+1(log x)βi+1+(i−1) + xX
− 1

∆i (log x)δi

)
.

(3.11)
Substituting (3.8), (3.10) and (3.11) in (3.4) we obtain after some cancella-
tions that

Ai+1(x) = λi+1x
(
Pi(log x) + Pi−1(log x) + Ci

)
+ xQi−1(log x)

+O
(
x(Y −αi+1 + X

− 1

∆i )(log x)δi+1

) (3.12)

since βi+1 + (i − 1) < δi+1, δi < δi+1. We now choose X, Y so that

X
1

∆i = Y
αi+1 =

(
x

X

)αi+1

which gives

X
1

∆i = x
1

∆i+(1/αi+1) = x
1

∆i+1 ;

then the error term in (3.12) becomes

O
(
x

1− 1

∆i+1 (log x)δi+1

)
.

Taking

Pi(t) = λi+1(Pi(t) + Pi−1(t) + Ci) + Qi−1(t) ,

a polynomial of degree i and with leading coefficient λ1 . . . λi+1/i!, we obtain
the required result for Ai+1(x) in the form of that in (3.3). This completes
our proof by induction. �

We apply this lemma with i = l. Recall that by Corollary 3

G(s) = H(s)

l∏

r=1

ζKr
(s) ,

where H(s) =
∞∑

m=1

h(m)m−s is absolutely convergent for σ >
1

2
and H(1) 6= 0.

Hence

A(x) =
∑

m≤x

ω(m) =
∑

m0m1...ml≤x

h(m0)
l∏

r=1

jr(mr).

We use Lemma 5 with i = l to estimate this sum provided ∆l > 2, which
holds when l > 1 or l = 1 and k1 > 3. In the exceptional cases we do not
have enough information about H(s) when σ = 1 − 1

∆l

so we modify α1 to

ensure that 1 − α1 >
1

2
; for example, when l = 1, take α1 = 36

73
if k1 = 2 and

α1 = 26

53
if k1 = 3. Then let ∆ = ∆l, except in the exceptional cases when

with the modified α1 we put ∆ = 1

α1

.
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Proof of Theorem 1. Let

m = m1 . . .ml, a(m) =

l∏

r=1

jr(mr) ≥ 0 .

For any X < x with X → ∞ as x → ∞, we have by Lemma 5 that

A(x) =
∑

mn≤x

a(m)h(n) =
∑

n≤X

h(n)Al(
x

n
)+O

(
x(log x)l−1

∑

X<n≤x

|h(n)|n−1

)
.

The first sum on the right equals

x
∑

n≤X

h(n)n−1
Pl−1(log x

n
) + O

(
x

1− 1

∆ (log x)δl

∑
n≤X

|h(n)|n−1+
1

∆

)

= x

∞∑
n=1

h(n)n−1
Pl−1(log x

n
)

+O

(
x
∑

n>X

|h(n)|n−1
∣∣Pl−1(log x

n
)
∣∣+ x

1− 1

∆ (log x)δl

∑
n≤X

|h(n)|n−1+
1

∆

)
.

The first sum here converges absolutely to a polynomial P
∗
l−1

(log x) of degree
l − 1 and with leading coefficient B/(l − 1)! where

B = λ1 . . . λlH(1) . (3.13)

Since 1 − 1

∆
>

1

2
,

∑

n≤X

|h(n)|n−1+
1

∆ <

∞∑

n=1

|h(n)|n−1+
1

∆ � 1 .

For 0 < η <
1

2
,

∑

n>X

|h(n)|n−1

∣∣∣Pl−1(log
x

n
)
∣∣∣ < X

η− 1

2

∞∑

n=1

|h(n)|n− 1

2
−η
∣∣∣Pl−1(log

x

n
)
∣∣∣

�η X
η− 1

2 (log x)l−1
.

Choose X, η so that X
1

2
−η = x

1

∆ ; for example let η = 1

2
(1

2
− 1

∆
),

X = x
4

2+∆ = o(x)

since ∆ > 2. Then we see that all the error terms are O(x1− 1

∆ (log x)δ) where
δ = max(δl, l − 1). Hence

A(x) =
∑

m≤x

ω(m) = xP
∗
l−1

(log x) + O(x1− 1

∆ (log x)δ) ,

which proves Theorem 1. �
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Proof of Corollary 1. We use partial summation to deduce this from Theorem
1. We have

C(x) =

∫ x

1−

v
−1

d(A(v)) = Pl(log x) + Pl−1(log x) + C + O(x−θ)

where Pl is given by (3.6) and C =
∫∞

1−

(
A(v)−vPl−1(log v)

)
v
−2

dv = al. Hence

C(x) = Pl(log x) + O(x−θ)

where Pl(t) = Pl(t) + Pl−1(t) + C, which is a polynomial of degree l and with
leading coefficient B/l! where B is given by (3.13). �

4. The functions ρl(u) and µl(u)

4.1. The generalized Dickman function. We defined the generalized Dick-
man function ρl(u) in (1.7) by

ρl(u) = ul−1

(l−1)!
(0 < u ≤ 1) , ρl(u) = 0 (u ≤ 0) ,

uρ
′
l(u) = (l − 1)ρl(u) − lρl(u − 1) (u > 1) .



 (4.1)

When l = 1, this reduces to the usual Dickman function ρ(u), except that
ρ(0) is usually defined to be 1, not 0.

We need the following properties of ρl(u) and its derivatives:

Lemma 6. (i) For l ≥ 2, ρl(u) and its first (l−2) derivatives are continuous

for all real u.

(ii) For l ≥ 1, ρ
(l−1)

l (u) is continuous except at u = 0, and

ρ
(l−1)

l (0−) = 0, ρ
(l−1)

l (0+) = 1 .

For n ≥ l, ρ
(n)

l (u) is continuous except at u = 1, 2, . . . , n + 1 − l where it

has a finite jump.

(iii) For each n ≥ 0, there exists u0 such that (−1)n
ρ

(n)

l (u) > 0 for u ≥ u0.

In particular ρl(u) > 0 for u > 0. Also as u → ∞
∣∣∣ρ(n)

l (u)
∣∣∣ ∼ ρl(u)(log u)n

, (4.2)

∣∣∣ρ(n)

l (u)
∣∣∣ = exp

(
−u
(
log u + log

2
u + O(1)

))
, (4.3)

ρ
(n+1)

l (u) = − log(u log u)ρ
(n)

l (u)
(
1 + o(1)

)
. (4.4)

(iv) For v > 0 and u − v > max(u0, n + 1)

ρ
(n)

l (u − v)/ρ
(n)

l (u) ≤ exp
((

1 + o(1)
)
v log(u logu)

)
. (4.5)

The function ρl(u) belongs to a family of functions studied in [25] using a
different notation, and the results in (i), (ii), and (iii) follow from Theorems
1(ii), 3(iii) and equation (3.4) there. Part (iv) is obtained from (4.4) by

integrating ρ
(n+1)

l (w)/ρ
(n)

l (w) over u − v ≤ w ≤ u.
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We turn next to the Laplace transform of ρ
(n)

l (u), when defined. Recall

that a function f(u) and its Laplace transform f̂(s), where u ∈ R and s ∈ C,
satisfy

f̂(s) =

∫ ∞

0

e
−sv

f(v)dv, f(u) =
1

2πi

∫ c+i∞

c−i∞

e
us

f̂(s)ds (4.6)

when these integrals converge.

Lemma 7. (i) For 0 ≤ n < l and all s ∈ C, the Laplace transform ρ̂
(n)

l (s)

of ρ
(n)

l (u) exists. Moreover

ρ̂
(n)

l (s) = s
n
ρ̂l(s) (s ∈ C) , (4.7)

and

ρ̂l(s) = ρ̂(s)l
. (4.8)

(ii) We have

s
l
ρ̂l(s) = 1 + O

(
e
−σ + |σ|

|t|

)
if |t| > max(e−σ

, |σ|) . (4.9)

Part (i) follows from Theorem 2(ii) of [25]; for (ii) see equation (3.6) of [19].

We also use another function closely related to ρ
(l−1)

l (u), and its Laplace
transform. We defined zl(u) in (1.8) by

zl(u) = 1 (0 ≤ u ≤ 1) , zl(u) = 0 (u < 0) , uz
′
l(u) = −lzl(u−1) (u > 1) .

(4.10)
From (4.1) it follows that, for u > 1,

uρ
(l)

l (u) = −lρ
(l−1)

l (u − 1) ,

and hence ρ
(l−1)

l (u) and zl(u) are equal, except at u = 0 where zl(0) = 1

but ρ
(l−1)

l (0) has not been defined. By Lemma 6(ii), z
(r)

l (u) is continuous for
r ≥ 1, except at u = 1, . . . , r where it has a finite jump.

Lemma 8. The Laplace transform ẑl(s) of zl(u) is defined for all s ∈ C and

satisfies

s
l
ρ̂l(s) = sẑl(s) . (4.11)

Proof. See Lemma 7 (i). �

4.2. Expansion of a related function. Our next aim is to investigate an-
other function µl(u) that, together with its Laplace transform, will be used
to establish Theorem 3.
Definition For u > 0, let

µl(u) =

∫ u

0−

zl(u − v)d (C(yv)) . (4.12)
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Lemma 9. Let n ∈ N be fixed and assume that (x, y) ∈ Hε. If n > l, assume

also that u ∈ In−l, defined in (1.10). Then with the br given by (2.29)

µl(u) = (log y)l

{
b0

∫ u

0
ρl(v)dv +

n∑
r=1

brρ
(r−1)

l (u − 0)(log y)−r

+O
(
ρl(u) (log(u+1))

n

(log y)n+1

)}
.

(4.13)

Proof. By (1.4)

C(yv) = Pl(v log y) + E(yv) where E(yv) � y
−θv

. (4.14)

Since br = P
(l−r)

l (0) for 0 ≤ r ≤ l by (2.31) and zl(u − v) = ρ
(l−1)

l (u − v), we
find on integrating by parts that

µl(u) = (log y)l

{
b0

∫ u

0
ρl(v)dv +

l∑
r=1

brρ
(r−1)

l (u − 0)(log y)−r

}

+E(yu) +
∫ u−1−0

0−
z
′
l(u − v)E(yv)dv ,

(4.15)

since z
′
l(w) = ρ

(l)

l (w) = 0 for w < 1. For n ≤ l, the result now follows on
using (4.14), (4.2) and (4.19) with n = l. When n > l, we expand the last
integral using the method of proof of Lemme 4 of [16].

For t ≥ 1, let F0(t) = −E(t) and for r ≥ 1 define

Fr(t) =
(−1)r−1

(r − 1)!

∫ ∞

t

E(w)
(
log

w

t

)r−1

w
−1

dw . (4.16)

Then for r ≥ 1 we see that F
′
r(t) = Fr−1(t)t

−1 so log yFr(y
v) = d

dv
(Fr+1(y

v));

also Fr(1) = br+l by (2.32), and Fr(t) � t
−θ for all r ≥ 0. For r ≥ 0, let

Jr(u, y) =

∫ ∞

1+

z
(r+1)

l (u − log t

log y
)Fr(t)t

−1
dt = log y

∫ u

0+

z
(r+1)

l (u − v)Fr(y
v)dv .

(4.17)
For n > l, by integrating J0(u, y) by parts (n − l) times and recalling that

z
(r+1)

l (v) has finite jump discontinuities at v = 1, . . . , r + 1 and that

zl(0+) − zl(0−) = 1,

we obtain

E(yu) +

∫ u−1−0

0−

z
′
l(u − v)E(yv)dv = E(yu) − J0(u, y)(log y)−1

=

n∑

r=l+1

brρ
(r−1)

l (u − 0)(log y)l−r − Jn−l(u, y)(log y)l−n−1

−
n−l∑

i=0

(log y)−i
∑

0≤j<min(i+1,u)

(
z

(i)

l (j + 0) − z
(i)

l (j − 0)
)

Fi(y
u−j) . (4.18)
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From the properties of ρ
(n)

l (v) = z
(n−l+1)

l (v) in Lemma 6 we now deduce
that

Jn−l(u, y) � log y

∫ u

0−

∣∣∣ρ(n)

l (u − v)
∣∣∣ y−vθ

dv � ρl(u) (log(u + 1))n
. (4.19)

We recall that ρl(u) > 0 for u > 1. When u ≤ 2u0, Jn−l(u, y) � 1 from which
(4.19) follows. If u > 2u0, so u − u0 > u0,

log y

∫ u

u−u0

∣∣∣ρ(n)

l (u − v)
∣∣∣ y−vθ

dv � y
−(u−u0)θ �

∣∣∣ρ(n)

l (u − 0)
∣∣∣

by (4.3) and since in the region Hε we have

log u ≤ log
2
x ≤ (log y)

3

5
−ε1, ε1 =

9ε

5(5 + 3ε)
. (4.20)

When 0 ≤ v ≤ u − u0, so u − v ≥ u0, we use (4.5) to obtain

log y

∫ u−u0

0

∣∣∣ρ(n)

l (u − v)
∣∣∣ y−vθ

dv

≤
∣∣∣ρ(n)

l (u − 0)
∣∣∣ log y

∫ u−u0

0

y
−vθ

e
(1+o(1))v log u log

2
u
dv

�
∣∣∣ρ(n)

l (u − 0)
∣∣∣ log y

∫ u−u0

0

y
−vθ/2

dv �
∣∣∣ρ(n)

l (u − 0)
∣∣∣

on using (4.20). Then (4.19) follows when u > 2u0 on using (4.2).

Since the discontinuities of z
(i)

l (v) are bounded, the double sum on the right
of (4.18) is

�
n−l∑

i=0

(log y)−i
∑

0≤j<min(i+1,u)

y
−(u−j)θ

. (4.21)

If u ≥ n − l + 1, this double sum is

� y
−(u−n+l)θ(log y)l−n � ρl(u)(log u)n(log y)l−n−1 (4.22)

by (4.2), (4.3) and (4.20). If buc = h, 1 ≤ h ≤ n−l, we have u−h ≥ εn−l,h(y),
so by (1.11) y

−(u−h)θ ≤ (log y)−(n−l+1−h) and it follows that the terms with
j = h in the double sum contribute

�
n−l∑

i=h

(log y)−i(log y)−(n−l+1−h) � (log y)l−n−1

� ρl(u)(log(u + 1))n(log y)l−n−1
,

(4.23)

since u is bounded. The remaining terms in (4.21) contribute when buc = h

� y
−θ � ρl(u)(log(u + 1))n(log y)l−n−1

. (4.24)
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From equations (4.15) to (4.19) and (4.21) to (4.24), we deduce (4.13) under
the stated conditions. By (4.4) and (4.20), the terms in the sum decrease in

size for large u. As u → ∞,
∫ u

0
ρl(v)dv = e

γl −
∫∞

u
ρl(v)dv = e

γl + O
(

ρl(u)

log u

)
.

For u large enough we see by (4.2) that the O-term is O(|ρ(n)

l (u)|(log y)−n−1).
�

Lemma 10. The Laplace transform µ̂l (s) of µl (u) is defined in σ > 0 and

is given by

µ̂l (s) = ẑl(s)G

(
1 +

s

log y

)
. (4.25)

Proof. This follows from (4.12), (2.30) and the convolution Theorem for
Laplace transforms and holds in σ > 0. We have that

µ̂l (s) =

∫ ∞

0

µl(v)e−vs
dv .

�

5. Proof of Theorem 3

Next we give a direct proof of this theorem that does not depend on The-
orem 2 or [24]. For ζK(s) a Dedekind zeta-function given by (2.18), define
ζK(s, y) for σ > 0 by

ζK(s, y) =
∑

a
P (a)≤y

(
N(a)

)−s
=

∏

p

N(p)≤y

(
1 −

(
N(p)

)−s
)−1

, (5.1)

where P (a) = max{N(p) : p | a} for a 6= O. Let

G(s, y) =

∞∑

m=1

P (m)≤y

ω(m)m−s (σ > 0) . (5.2)

Adapting the proof of (2.20) we find that

G(s, y) = H(s, y)

l∏

i=1

ζKi
(s, y) , (5.3)

where for σ ≥ 1

2
+ δ (for any δ > 0)

H(s, y) = H(s)
(
1 + O(y

1

2
−σ)
)
, (5.4)

since H(s)/H(s, y) consists of a finite number of products of the form∏
p>y

(
1 + O(p−2σ)

)
.
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Lemma 11. (i) To each ε > 0, there exists y0(ε) such that

ζK(s, y) = ζK(s)(s − 1) log yρ̂
(
(s − 1) log y

)
(

1 + O

(
1

Lε(y)

))
(5.5)

uniformly for

y ≥ y0(ε), σ ≥ 1 − (log y)−
2

5
−ε

, |t| ≤ Lε(y) . (5.6)

(ii) To each ε > 0, there exists y0(ε) such that

G(s, y) = G(s)(s − 1) log y ẑl

(
(s − 1) log y

)
(

1 + O

(
1

Lε(y)

))
(5.7)

uniformly when (5.6) holds.

Part (i) is proved in the same way as Lemma 3.5.9.1 of [23], using (2.27);
see Lemma 4.1 of [18]. Part (ii) then follows from (5.3), (5.4), (4.8) and
(4.11).

Let

T = Lε/3(y) (5.8)

using the definition (1.6).

Lemma 12. In the region Hε

C(x, y) =
1

2πi

∫ 1

u
+iT log y

1

u
−iT log y

G

(
1 +

s

log y

)
ẑl(s)e

us
ds + O

(
(log x)l

√
T

)
. (5.9)

Proof. Let κ = 1

log x
. Then by Perron’s formula

C(x, y) =
1

2πi

∫ κ+iT

κ−iT

G(s + 1, y)s−1
x

s
ds + E , (5.10)

where

E �
∞∑

m=1

P (m)≤y

ω(m)m−1−κ

1 + T
∣∣log x

m

∣∣ �
(log x)l

√
T

, (5.11)

on considering separately the cases |x − m| >
x√
T
, when

∣∣log x
m

∣∣ � 1√
T

and

we use that G(1+κ) � (log x)l, and |x − m| ≤ x√
T

when we apply Corollary
1.

We observe that the integral in (5.10) is

� G(1 + κ)

∫ T

0

dt

κ + t
� (log x)l log T , (5.12)
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since − log κ = log
2
x = o(log T ) by (4.20). We now apply Lemma 11(ii) with

ε replaced by ε/3 to the integral in (5.10) to obtain

C(x, y) =
(
1 + O

(
1

T

))
1

2πi

∫ κ+iT

κ−iT
G(s + 1)s log y ẑl(s log y)s−1

x
s
ds

+O
(

(log x)
l

√
T

)

= 1

2πi

∫ 1

u
+iT log y

1

u
−iT log y

G

(
1 + s

log y

)
ẑl(s)e

us
ds + O

(
(log x)

l

√
T

)
,

by the change of variable s → s
log y

and using (5.12); this gives (5.9). �

Since G

(
1 + s

log y

)
has a pole of order l at s = 0 and

lim
s→0

s
1−l

ẑl(s) = ρ̂l(0) = e
γl

,

we see that the integrand in (5.9) has a simple pole at s = 0. This requires
us to use a different strategy from one that would be used in a direct proof
of Theorem 2, when the corresponding integrand has no poles, and in that
case the integral is estimated by moving the line of integration to the left of
s = 0.

Lemma 13.

J :=
1

2πi

∫ 1

u
+i∞

1

u
+iT log y

G

(
1 +

s

log y

)
ẑl(s)e

us
ds � (log x)l

√
T

. (5.13)

Proof. By (4.9) and (4.11), when σ = 1

u
, |t| ≥ e

− 1

u

sẑl(s) = 1 + O

(
1

|t|

)
. (5.14)

Hence

J =
1

2πi

∫ 1

u
+i∞

1

u
+iT log y

G(1 +
s

log y
)s−1

e
us

ds + O

(∫ ∞

T log y

(log
t

log y
)l
t
−2

dt

)
,

(5.15)

by (2.20) and (2.26). The error term is O
(

(log T )
l

T log y

)
. If x /∈ N,

C(x) =
1

2πi

∫ κ+i∞

κ−i∞

G(1 + s)s−1
x

s
ds ;

we see that the main integral in J is just the error term obtained by applying
Perron’s formula to this integral for C(x) and so is

�
∞∑

m=1

ω(m)m−1−κ

1 + T
∣∣log x

m

∣∣ �
(log x)l

√
T

(5.16)

as in (5.11). Hence (5.13) follows from (5.15) and (5.16). �
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Proof of Theorem 3. From Lemmas 10, 12 and 13 and equation (4.20) we
deduce that in the region Hε

C(x, y) = µl(u) + O

(
(log x)l

√
T

)
= µl(u) + O

(
1

Lε(y)

)
. (5.17)

Also since µl(u) � 1,

C(x, y) =

(
1 + O

(
1

Lε(y)

))
µl(u) , (5.18)

which gives Theorem 3(i). Part (ii) is a consequence of (5.17) and Lemma 9.
We observe that, by (4.3), for large u

∣∣∣ρ(n)

l (u)
∣∣∣ (log y)l−n−1

>
1

Lε(y)

when

u(log u + log
2
u + O(1)) < (log y)

3

5
−ε − (n + 1 − l) log

2
y ;

this is valid in the region Gε given by (1.15) since u = log x

log y
. �
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SELF-INVERSIVE POLYNOMIALS WITH ALL ZEROS ON
THE UNIT CIRCLE

CHRISTOPHER D. SINCLAIR AND JEFFREY D. VAALER

Abstract. We give a number of sufficient conditions for a self-inversive
polynomial to have all zeros on the unit circle.

1. Introduction

Given a polynomial g(z) ∈ C[z] we may create a new polynomial, g∗(z)
whose coefficients are obtained from the coefficients of g by reversing their
order followed by complex conjugation. That is, if

g(z) = c0z
N + c1z

N−1 + · · · + cN−1z + cN , (1.1)

then

g∗(z) = cNzN + cN−1z
N−1 + · · · + c1z + c0 .

Or, more succinctly, g∗(z) = zN g(1/z). If α is a zero of g then 1/α is a zero
of g∗, and thus the zeros of g∗ are determined by ‘inverting’ the zeros of g
over the unit circle.

We define the set of conjugate reciprocal polynomials to be the set of
f ∈ C[z] such that f = f ∗. And, if there exists some ω on the unit circle such
that f = ωf ∗, then we will call f an ω-conjugate reciprocal polynomial. The
union of all ω-conjugate reciprocal polynomials over all ω on the unit circle
is the set of self-inversive polynomials. Thus conjugate reciprocal polynomi-
als are simply self-inversive polynomials corresponding to ω = 1. Moreover,
there is an isometric bijection between the coefficient space of conjugate re-
ciprocal polynomials and that of ω-conjugate reciprocal polynomials. This
correspondence is given by fixing a branch of the N -th root, and associat-
ing the conjugate reciprocal polynomial f(z) to the ω-conjugate reciprocal
polynomial ωf(ω−1/N z).

The zeros of a self-inversive polynomial are either on the unit circle, or
come in pairs symmetric with respect to the unit circle. This explains the
nomenclature, since the zeros are invariant under ‘inversion’ with respect to
the unit circle. Self-inversive polynomials were first introduced in [1], the
original interest being the determination of the number of zeros on the unit
circle. Here our goal is similar; we report on conditions for a self-inversive

2000 Mathematics Subject Classification. Primary: 11C08; Secondary: 51M16, 52A27.
Key words and phrases. Self-inversive polynomials, zeros, unit circle .
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polynomial to have all zeros on the unit circle. Our results are similar in
spirit to recent results of Schinzel [5] and Lakatos and Losonczi [3].

For p ≥ 1 we define |g|p to be the p-norm on the coefficients of g. That is,
if g is given as in (1.1), then |g|pp = |c0|p + |c1|p + · · · + |cN |p.

Theorem 1.1. If f is a monic self-inversive polynomial of degree N such
that

|f |pp ≤ 2 +
2p

(N − 1)p−1 ,

then f has all its zeros on the unit circle.

In fact, this result can be strengthened to the following:

Theorem 1.2. If f is a monic self-inversive polynomial with L non-zero
coefficients such that

|f |pp ≤ 2 +
2p

(L − 2)p−1 ,

then f has all its zeros on the unit circle.

Theorems 1.1 and 1.2 are sharp in the sense that their right hand sides
cannot be unconditionally improved.

It is easily seen that

|f |pp =
∣∣ωf(ω−1/N z)

∣∣p
p
,

and consequently it suffices to prove Theorems 1.1 and 1.2 for monic conjugate
reciprocal polynomials.

2. The Geometry of Conjugate Reciprocal Polynomials

Theorems 1.1 and 1.2 are presented (and proved) in an analytic way. How-
ever, they also shed light onto the interesting geometric properties of the set
of monic conjugate reciprocal polynomials with all zeros on the unit circle. To
see the geometric picture, notice that if f(z) = zN + c1z

N−1 + · · ·+ cN−1z +1
is conjugate reciprocal, then cN−n = cn. If N is even, this implies that the
middle coefficient, cN/2, is real. It follows that a monic conjugate reciprocal
polynomial of degree N can be described by N −1 real numbers, and we may
identify the set of monic conjugate reciprocal polynomials of degree N with
RN−1. Perhaps the best way to do this is to introduce the N − 1 by N − 1
matrix XN , whose j, k entry is given by

XN [j, k] =




√
2

2 (δj,k + δN−j,k) if 1 ≤ j < N/2 ,

δj,k if j = N/2 ,

√
2

2 (iδN−j,k − iδj,k) if N/2 < j < N ,

(2.1)
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where δj,k = 1 if j = k and is zero otherwise. For instance,

X5 =

√
2

2




1 0 0 i
0 1 i 0
0 1 −i 0
1 0 0 −i


 and X6 =

√
2

2




1 0 0 0 i
0 1 0 i 0

0 0
√

2 0 0
0 1 0 −i 0
1 0 0 0 −i


 .

The
√

2/2 factor is a normalization so that | det XN | = 1. Given a ∈ RN−1,
XNa is a vector in CN−1. Moreover if c = XNa then cN−n = cn, and we may
associate a conjugate reciprocal polynomial to a by specifying that

fa(z) = (zN + 1) +
N−1∑
n=1

cnz
N−n , c = XNa .

Finally, we set

WN = {w ∈ RN−1 : fw has all zeros on the unit circle} . (2.2)

The set WN was first studied by Petersen and Sinclair [4]. Their primary
goal was the determination of the volume of WN (they show it is the same as
the volume of the N − 1 dimensional ball of radius 2). A related calculation
was done by DiPippo and Howe who determine the volume of the set of real
polynomials with all roots on the unit circle [2].

Finding sufficient conditions for a conjugate reciprocal polynomial to have
all its zeros on the unit circle corresponds to describing subsets of WN . When
p = 2, Theorem 1.1 gives the radius of the largest N − 1-sphere (centered at
the origin) which is inscribed in WN .

−2 4
w1

−3

3

w2

0
6 w1

−6
0

6

w2

0

6

w3

−6
−6

0

6

Figure 1. W3 and W4 with their largest inscribed spheres.

Theorem 1.2 gives us the largest inscribed spheres for slices of WN corre-
sponding to setting a fixed number of coefficients equal to 0. For instance,
W5 is a subset of R4. The slice of W5 corresponding to setting coefficients of
z3 and z2 to zero is given by the first graphic in Figure 2. The second graphic
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in Figure 2 corresponds to the slice formed by setting the coefficients of z4

and z to be zero.

−2 2
w1

−2

2

w4

−2 2
w2

−2

2

w3

Figure 2. Slices of W5 and their largest inscribed disks

WN has geometric properties which will allow us to describe two key sub-
sets. The properties that we need are summarized here.

Theorem 2.1 (K. Petersen, C. Sinclair).

(1) WN is homeomorphic to a closed (N − 1)-ball,
(2) ∂WN = {w ∈ WN : fw has at least one multiple zero}.
(3) The group of isometries of WN is isomorphic to the dihedral group of

order 2N , and generated by the isometries given by the N−1 by N−1
matrices R and C, whose j, k entries are

R[j, k] = δj,k cos

(
2πk

N

)
− δj,N−k sin

(
2πk

N

)
,

C[j, k] =




δj,k if j ≤ N/2 ,

−δj,k if j > N/2 .

Theorem 2.1, shows us the way to find the radius of the largest sphere
inscribed in WN : Find the minimal 2-norm of a degree N monic conjugate
reciprocal polynomial with all zeros on the unit circle and at least one multiple
zero.

Theorem 2.2. Let

h(z) = zN − 2

N − 1
zN−1 − 2

N − 1
zN−2 − · · · − 2

N − 1
z + 1 .

If f(z) is a monic polynomial of degree N , with all zeros on the unit circle
and at least one multiple zero, then

|f |2 ≥ |h|2 . (2.3)
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Moreover, there is equality in (2.3) if and only if there exists ξ on the unit
circle such that f(z) = ξN h(ξ−1z).

Notice that |h|pp is exactly the right hand side of the inequality in Theo-
rem 1.1.

Theorem 2.2, and the isometries of WN allow us to enumerate the set of
monic degree N conjugate reciprocal polynomials which attain equality in
(2.3). To see this, notice that fRw (respectively, fCw) is obtained from fw

by multiplying each zero of fw by e2πi/N (respectively, taking the complex
conjugate of each zero of fw). That is, fRw(z) = fw(e−2πi/N z). It is easily
verified that h has a double zero at z = 1; the remaining zeros are simple.
Furthermore, h = fu, where the m-th coordinate of u ∈ RN−1 is given by

um =




− 2
√

2

N − 1
if m < N/2 ,

− 2

N − 1
if m = N/2 ,

0 otherwise.

(2.4)

Thus, fRn u is a polynomial in ∂WN with a double zero at z = e2πin/N and
the set {Rnu : 0 ≤ n < N} lies in the intersection of ∂WN with the sphere of
radius 2/

√
N − 1 centered at the origin.

Figure 3. A plot of the zeros of fRn u for 0 ≤ n < N when N = 5.

For each 0 ≤ n < N , the surface of the sphere of radius 2/
√

N − 1 is
tangent to the boundary of WN at Rnu. The tangent plane of ∂WN at Rnu
separates RN−1 into two half spaces, one of which contains the origin. The
intersection of the half spaces formed in this manner from all of the Rnu
forms a generalized tetrahedron — a simplex. It turns out that this simplex
is contained completely in WN , which gives us another sufficient condition for
a self-inversive polynomial to have all zeros on the unit circle.

Theorem 2.3. Let u ∈ RN−1 be defined by (2.4). If

Rnu · w ≤ 4

N − 1
for all 0 ≤ n < N , (2.5)

then w ∈ WN and fw has all zeros on the unit circle.
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This simplex can also be described as the convex hull of a set of N points
in WN .

Corollary 2.4. Let t ∈ RN−1 be given by

tm =




2
√

2 if m < N/2 ,

2 if m = N/2 ,

0 otherwise.

That is,
ft(z) = zN + 2zN−1 + 2zN−2 + · · · + 2z + 1.

If w is a convex linear combination of {Rnt : 0 ≤ n < N}, then fw(z) has
all zeros on the unit circle.

−2 4
w1

−3

3
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−6

0
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0
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0
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0
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Figure 4. W3 and W4 with their inscribed simplices.

The right hand side of (2.5) is simply |u|22, and thus the inscribed simplex
is described by the equations Rnu · w ≤ |u|22. Restricting ourselves to slices
of WN formed by setting all but L coefficients of the corresponding conjugate
reciprocal polynomials to zero, we may improve Theorem 2.3 by replacing u
with a vector of length 4/

√
L − 2 (the radius of the largest sphere inscribed

in the slice of WN ).

Theorem 2.5. Let w ∈ RN−1 be such that fw has exactly L non-zero coeffi-
cients, and let u′ = (N − 1)/(L − 2)u. If

Rnu′ · w ≤ 4

L − 2
for all 0 ≤ n < N , (2.6)

then w ∈ WN and fw has all zeros on the unit circle.

Geometrically, Theorem 2.5 describes a number of convex polytopes which
are inscribed into the intersection of WN with linear subspaces of dimension
L − 2. Fixing one such linear subspace L , and identifying it with RL−2 we
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may project u onto a vector u∗ ∈ RL−2. The isometries of WN fix L , and
thus each isometry induces an action on RL−2. The orbit of u∗ under the
induced isometries yields a set of N vectors. It is easy to verify that the
projection of Rnu′ onto L corresponds exactly to the image of u∗ under the
action on RL−1 induced by the isometry Rn. The N conditions in (2.6) thus
yield at most N distinct half spaces in RL−2. In this manner Theorem 2.5
cuts out a convex polytope inside with at most N codimension one faces lying
in the intersection of WN and L .

Figure 5 shows the slices of W5 from Figure 2 with the inscribed polytopes
guaranteed by Theorem 2.5. Notice in the slice of W5 determined by setting
the coefficients of z4 and z equal to zero, the inscribed polytope seems to
describe the entire slice.

−2 2
w1

−2

2

w4

−2 2
w2

− 2

2

w3

Figure 5. Slices of W5 and their inscribed polytopes

3. Proofs

Viewed through the prism of trigonometric polynomials, the proofs of The-
orems 1.1, 1.2, 2.2, 2.3 and 2.5 are elementary.

First notice that if

f(z) = zN + 1 +

N−1∑
n=1

cnz
N−n (3.1)

is conjugate reciprocal, and M = N/2, then

V (θ) : = eMiθf(eiθ)

= eMiθ + e−Miθ +

{
M−1∑
m=1

cme(M−m)iθ + cme(−M+m)iθ

}
+ c∗M ,

= 2 cos(Mθ) + c∗M

+ 2

{
M−1∑
m=1

�(cm) cos
(
(M − m)θ

)
+ �(cm) sin

(
(M − m)θ

)}
,
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where the asterisk on the coefficient cM indicates that this (middle) coefficient
is non-existent when N is odd. From the right hand side of this expression,
we see that V is real valued, and has exactly as many zeros in the interval
[0, 2π) as f has on the unit circle. The number of real zeros of V is also equal
to the number of intersections of the graph of −2 cos(Mθ) with that of

U(θ) =

{
M−1∑
m=1

�(cm) cos
(
(M − m)θ

)
+ �(cm) sin

(
(M − m)θ

)}
+ c∗M , (3.2)

(counting points of tangency of the graphs with multiplicities). If f = fw ,
then c = XNw and 2�(cm) =

√
2 wm , 2�(cm) =

√
2 wN−m =

√
2 w2M−m and

cM = wM (should it exist). In this situation (3.2) reads as

U(θ) = w∗
M +

√
2

{
M−1∑
m=1

wm cos
(
(M − m)θ

)
+ w2M−m sin

(
(M − m)θ

)}
.

(3.3)
The following lemma is an easy consequence of the Intermediate Value

Theorem.

Lemma 3.1. Let f and U be given as in (3.1) and (3.2). If

(−1)nU

(
2πn

N

)
+ 2 ≥ 0 , for each 0 ≤ n < N ,

then f has all zeros on the unit circle.

Proof. Since WN is closed, it suffices to prove the lemma for the case of strict
inequality. That is, we may assume

(−1)nU

(
2πn

N

)
+ 2 > 0 , for each 0 ≤ n < N .

Replacing (−1)n with 1/ cos(πn) and clearing denominators, we find that
V (2πn/N) = U (2πn/N) + 2 cos(πn) is positive when n is even, and negative
when n is odd. Thus, by the Intermediate Value Theorem, V must have at
least one zero in each interval (2πn/N, 2π(n + 1)/N), and since there are N
such subintervals of [0, 2π), V must have at least N zeros in [0, 2π). It follows
that f has at least (and hence exactly) N zeros on the unit circle. �

Since there is an isometric bijection between conjugate reciprocal polynomi-
als and ω-conjugate reciprocal polynomials, it suffices to prove Theorems 1.1,
1.2 and 2.2 in the case where f is conjugate reciprocal. Theorems 2.3 and
2.5 are stated only for conjugate reciprocal polynomials, but can be used for
more general self-inversive polynomials by exploiting the isometric bijection.
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3.1. The Proof of Theorems 1.1 and 1.2. Perhaps the simplest restric-
tion on U which satisfies Lemma 3.1 is that |U(θ)| ≤ 2 for all θ ∈ [0, 2π).
Theorems 1.1 and 1.2 follow from this condition by Cauchy’s Inequality, since
if exactly L − 2 of the cm are nonzero, then

|U(θ)| ≤
{
|c∗M |p + 2

M−1∑
m=1

|cm |p
}1/p

(L − 2)1/q , where
1

p
+

1

q
= 1 .

Solving q in terms of p, and noticing that the expression in braces is nothing
more than |f |pp − 2, we have

|U(θ)| ≤ (|f |pp − 2)1/p(L − 2)(p−1)/p .

It follows that if

|f |pp ≤ 2 +
2p

(L − 2)p−1 ,

then |U(θ)| ≤ 2 for all θ, and f has N zeros on the unit circle.

3.2. The Proof of Theorem 2.2. As mentioned previously, Theorem 2.2
comes from finding the intersections of ∂WN with the closed ball of radius
2/
√

N − 1 centered at the origin. Call this ball B, and suppose v ∈ B∩∂WN .
Let {v�} ⊆ interior(B) be a sequence having v as a limit point. From Theo-
rem 1.1 and the proof of Lemma 3.1, each of the polynomials fv�

has all simple
zeros lying on the unit circle. Moreover, the zeros of fv�

are equidistributed
in the sense that each arc {eiθ : 2πn/N < θ < 2π(n+1)/N}, contains exactly
one zero.

By Theorem 2.1, fv must have at least one multiple zero, and since it is
a limit point of polynomials fv�

with equidistributed zeros, we may conclude
that fv has a double zero at e2πin/N for some 0 ≤ n < N . From our knowledge
of the isometries of WN , if w = R−nv, then fw has a double zero at z = 1.
Forming U as in (3.3), we have

U(0) = w∗
M +

√
2

M−1∑
m=1

wm = −2 , (3.4)

and by Cauchy’s inequality,

2 ≤
{

(w∗
M )2 +

M−1∑
m=1

w2
m

}1/2

(N − 1)1/2 = 2 ,

where the equality on the right follows since w is on the sphere of radius
2/
√

N − 1. We have equality in Cauchy’s inequality, and thus when N is
even, w1 = w2 = · · · = wM−1 = wM /

√
2, and when N is odd,

w1 = w2 = · · · = wM−1/2.
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This together with (3.4) implies that w = u given as in (2.4), and that
fw(z) = h(z) given as in the statement of the theorem. Moreover, v = Rnu,
and thus B ∩ ∂WN consists entirely of {Rnu : 0 ≤ n < N}, as claimed.

3.3. The Proof of Theorems 2.3 and 2.5. Using an easy induction argu-
ment based on the definition of R, or the fact that fRw(z) = fw(e−2πi/N z),
we can write Rn as the matrix given by

Rn[j, k] = δj,k cos

(
2πnk

N

)
− δj,N−k sin

(
2πnk

N

)
.

Thus, the m-th coordinate of Rnu is given by

(Rnu)m =




− 2
√

2

N − 1
cos

(
2πmn

N

)
if m < N/2 ,

− 2

N − 1
(−1)n if m = N/2 ,

2
√

2

N − 1
sin

(
2πmn

N

)
if m > N/2 ,

and, writing c(m) and s(m) for cos
(
(M−m)2πn/N

)
and sin

(
(M−m)2πn/N

)
respectively, we have

Rnu · w =
2

N − 1
(−1)n+1

(
w∗

M +
√

2

{
M−1∑
m=1

wmc(m) + w2M−ms(m)

})

=
2

N − 1
(−1)n+1U

(
2πn

N

)
.

By assumption, Rnu · w < 4/(N − 1), and thus, (−1)n+1U (2πn/N) ≤ 2 for
all 0 ≤ n < N . We conclude from Lemma 3.1 that fw has all zeros on the
unit circle.

The proof of Theorem 2.5 is essentially the same as that of Theorem 2.3
after replacing u with u′.
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THE MAHLER MEASURE OF ALGEBRAIC NUMBERS:

A SURVEY

CHRIS SMYTH

Abstract. A survey of results for Mahler measure of algebraic numbers,

and one-variable polynomials with integer coefficients is presented. Re-

lated results on the maximum modulus of the conjugates (‘house’) of an

algebraic integer are also discussed. Some generalisations are given too,

though not to Mahler measure of polynomials in more than one variable.

1. Introduction

Let P (x) = a0z
d + · · ·+ ad = a0

∏d
i=1

(z −αi) be a nonconstant polynomial
with (at first) complex coefficients. Then, following Mahler [101] its Mahler

measure is defined to be

M(P ) := exp

(
∫

1

0

log |P (e2πit)|dt

)

, (1)

the geometric mean of |P (z)| for z on the unit circle. However M(P ) had
appeared earlier in a paper of Lehmer [94], in an alternative form

M(P ) = |a0|
∏

|αi|≥1

|αi|. (2)

The equivalence of the two definitions follows immediately from Jensen’s for-
mula [88]

∫

1

0

log |e2πit − α|dt = log
+
|α|.

Here log
+

x denotes max(0, log x). If |a0| ≥ 1, then clearly M(P ) ≥ 1. This
is the case when P has integer coefficients; we assume henceforth that P is
of this form. Then, from a result of Kronecker [90], M(P ) = 1 occurs only if
±P is a power of z times a cyclotomic polynomial.

In [101] Mahler called M(P ) the measure of the polynomial P , apparently
to distinguish it from its (näıve) height. This was first referred to as Mahler’s
measure by Waldschmidt [165, p.21] in 1979 (‘mesure de Mahler’), and soon
afterwards by Boyd [33] and Durand [75], in the sense of “the function that
Mahler called ‘measure’ ”, rather than as a name. But it soon became a name.
In 1983 Louboutin [98] used the term to apply to an algebraic number. We
shall follow this convention too — M(α) for an algebraic number α will mean

2000 Mathematics Subject Classification. Primary 11R06.
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the Mahler measure of the minimal polynomial Pα of α, with d the degree
of α, having conjugates α = α1, α2, . . . , αd. The Mahler measure is actually
a height function on polynomials with integer coefficients, as there are only
a finite number of such polynomials of bounded degree and bounded Mahler
measure. Indeed, in the MR review of [98], it is called the Mahler height; but
‘Mahler measure’ has stuck.

For the Mahler measure in the form M(α), there is a third representation
to add to (1) and (2). We consider a complete set of inequivalent valuations
|.|ν of the field Q(α), normalised so that, for ν|p, |.|ν = |.|p on Qp. Here Qp

is the field of p-adic numbers, with the usual valuation |.|p. Then for a0 as in
(2),

|a0| =
∏

p<∞

|a0|−1

p =
∏

p<∞

∏

ν|p

max(1, |α|dν

ν ), (3)

coming from the product formula, and from considering the Newton polygons
of the irreducible factors (of degree dν) of Pα over Qp (see e.g. [170, p. 73]).

Then [169, pp. 74–79], [23] from (2) and (3)

M(α) =
∏

all ν

max(1, |α|dν

ν ), (4)

and so also

h(α) :=
log M

d
=
∑

all ν

log
+
|α|dν/d

ν . (5)

Here h(α) is called the Weil, or absolute height of α.

2. Lehmer’s problem

While Mahler presumably had applications of his measure to transcendence
in mind, Lehmer’s interest was in finding large primes. He sought them
amongst the Pierce numbers

∏d
i=1

(1 ± α
m
i ), where the αi are the roots of

a monic polynomial P having integer coefficients. Lehmer showed that for
P with no roots on the unit circle these numbers grew with m like M(P )m.
Pierce [120] had earlier considered the factorization of these numbers. Lehmer
posed the problem of whether, among those monic integer polynomials with
M(P ) > 1, polynomials could be chosen with M(P ) arbitrarily close to 1.
This has become known as ‘Lehmer’s problem’, or ‘Lehmer’s conjecture’, the
‘conjecture’ being that they could not, although Lehmer did not in fact make
this conjecture.1 The smallest value of M(P ) > 1 he could find was

M(L) = 1.176280818 . . . ,

1‘Lehmer’s conjecture’ is also used to refer to a conjecture on the non-vanishing of

Ramanujan’s τ -function. But I do not know that Lehmer actually made that conjecture

either: in [95, p. 429] he wrote “. . . and it is natural to ask whether τ(n) = 0 for any

n > 0.”
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where L(z) = z
10 + z

9 − z
7 − z

6 − z
5 − z

4 − z
3 + z + 1 is now called ‘Lehmer’s

polynomial’. To this day no-one has found a smaller value of M(P ) > 1 for
P (z) ∈ Z[z].

Lehmer’s problem is central to this survey. We concentrate on results for
M(P ) with P having integer coefficients. We do not attempt to survey results
for M(P ) for P a polynomial in several variables. For this we refer the reader
to [18], [33], [163], [39], [43], [40], [79, Chapter 3]. However, the one-variable
case should not really be separated from the general case, because of the fact
that for every P with integer coefficients, irreducible and in genuinely more
than one variable (i.e., its Newton polytope is not one-dimensional) M(P ) is
known [33, Theorem 1] to be the limit of {M(Pn)} for some sequence {Pn} of
one-variable integer polynomials. This is part of a far-reaching conjecture of
Boyd [33] to the effect that the set of all M(P ) for P an integer polynomial
in any number of variables is a closed subset of the real line.

Our survey of results related to Lehmer’s problem falls into three categories.
We report lower bounds, or sometimes exact infima, for M(P ) as P ranges
over certain sets of integer polynomials. Depending on this set, such lower
bounds can either tend to 1 as the degree d of P tends to infinity (Section 4),
be constant and greater than 1 (Section 5), or increase exponentially with d

(Section 6). We also report on computational work on the problem (Section
8).

In Sections 3 and 7 we discuss the closely-related function α and the
Schinzel-Zassenhaus conjecture. In Section 9 connections between Mahler
measure and the discriminant are covered. In Section 10 the known proper-
ties of M(α) as an algebraic number are outlined. Section 11 is concerned
with counting integer polynomials of given Mahler measure, while in Section
12 a dynamical systems version of Lehmer’s problem is presented. In Section
13 variants of Mahler measure are discussed, and finally in Section 14 some
applications of Mahler measure are given.

3. The house α of α and the conjecture of Schinzel and

Zassenhaus

Related to the Mahler measure of an algebraic integer α is α , the house of
α, defined as the maximum modulus of its conjugates (including α itself). For
α with r > 0 roots of modulus greater than 1 we have the obvious inequality

M(α)1/d ≤ M(α)1/r ≤ α ≤ M(α) (6)

(see e.g. [34]). If α is in fact a unit (which is certainly the case if M(α) < 2)
then M(α) = M(α−1) so that

M(α) ≤ (max(α , 1/α ))d/2
.
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In 1965 Schinzel and Zassenhaus [144] proved that if α 6= 0 an algebraic
integer that is not a root of unity and if 2s of its conjugates are nonreal, then

α > 1 + 4−s−2
. (7)

This was the first unconditional result towards solving Lehmer’s problem,
since by (6) it implies the same lower bound for M(α) for such α. They
conjectured, however, that a much stronger bound should hold: that under
these conditions in fact

α ≥ 1 + c/d (8)

for some absolute constant c > 0. Its truth is implied by a positive answer
to Lehmer’s ‘conjecture’. Indeed, because α ≥ M(α)1/d where d = deg α, we
have

α ≥ 1 +
log M(α)

d
= 1 + h(α), (9)

so that if M(α) ≥ c0 > 1 then α > 1 + log(c0)

d
.

Likewise, from this inequality any results in the direction of solving Lehmer’s
problem will have a corresponding ‘Schinzel-Zassenhaus conjecture’ version.
In particular, this applies to the results of Section 5.1 below, including that
of Breusch. His inequality appears to be the first, albeit conditional, result in
the direction of the Schinzel-Zassenhaus conjecture or the Lehmer problem.

4. Unconditional lower bounds for M(α) that tend to 1
as d → ∞

4.1. The bounds of Blanksby and Montgomery, and Stewart. The
lower bound for M(α) coming from (7) was dramatically improved in 1971
by Blanksby and Montgomery [22], who showed, again for α of degree d > 1
and not a root of unity, that

M(α) > 1 +
1

52d log(6d)
.

Their methods were based on Fourier series in several variables, making use
of the nonnegativity of Fejér’s kernel

1

2
+

K
∑

k=1

(

1 − k
K+1

)

cos(kx) = 1

2(K+1)

(

K
∑

j=0

e
ix(K

2
−j)

)2

.

They also employed a neat geometric lemma for bounding the modulus of
complex numbers near the unit circle: if 0 < ρ ≤ 1 and ρ ≤ |z| ≤ ρ

−1 then

|z − 1| ≤ ρ
−1

∣

∣

∣
ρ

z
|z|

− 1
∣

∣

∣
. (10)

In 1978 Stewart [158] caused some surprise by obtaining a lower bound of
the same strength 1 + C

d log d
by the use of a completely different argument.

He based his proof on the construction of an auxiliary function of the type
used in transcendence proofs.
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In such arguments it is of course necessary to make use of some arithmetic
information, because of the fact that the polynomials one is dealing with,
here the minimal polynomials of algebraic integers, are monic, have integer
coefficients, and no root is a root of unity. In the three proofs of the results
given above, this is done by making use of the fact that, for α not a root
of unity, the Pierce numbers

∏d
i=1

(1 − α
m
i ) are then nonzero integers for all

m ∈ N. Hence they are at least 1 in modulus.

4.2. Dobrowolski’s lower bound. In 1979 a breakthrough was achieved
by Dobrowolski, who, like Stewart, used an argument based on an auxiliary
function to get a lower bound for M(α). However, he also employed more
powerful arithmetic information: the fact that for any prime p the resultant
of the minimal polynomials of α and of α

p is an integer multiple of p
d. Since

this can be shown to be nonzero for α not a root of unity, it is at least p
d in

modulus. Dobrowolski [54] was able to apply this fact to obtain for d ≥ 2 the
much improved lower bound

M(α) > 1 +
1

1200

(

log log d

log d

)3

. (11)

He also has an asymptotic version of his result, where the constant 1/1200
can be increased to 1 − ε for α of degree d ≥ d0(ε). Improvements in the
constant in Dobrowolski’s Theorem have been made since that time. Cantor
and Straus [49] proved the asymptotic version of his result with the larger
constant 2 − ε, by a different method: the auxiliary function was replaced
by the use of generalised Vandermonde determinants. See also [125] for a
similar argument (plus some early references to these determinants). As with
Dobrowolski’s argument, the large size of the resultant of α and α

p was an
essential ingredient. Louboutin [98] improved the constant further, to 9/4−ε,
using the Cantor-Straus method. A different proof of Louboutin’s result was
given by Meyer [108]. Later Voutier [164], by a very careful argument based
on Cantor-Straus, has obtained the constant 1/4 valid for all α of degree
d ≥ 2. However, no-one has been able to improve the dependence on the
degree d in (11), so that Lehmer’s problem remains unsolved!

4.3. Generalisations of Dobrowolski’s Theorem. Amoroso and David
[3, 4] have generalised Dobrowolski’s result in the following way. Let α1, . . . , αn

be n multiplicatively independent algebraic numbers in a number field of de-
gree d. Then for some constant c(n) depending only on n

h(α1) . . . h(αn) ≥ 1

d log(3d)c(n)
. (12)

Matveev [107] also has a result of this type, but using instead the modified
Weil height h∗(α) := max(h(α), d−1| log α|).

Amoroso and Zannier [11] have given a version of Dobrowolski’s result for
α, not 0 or a root of unity, of degree D over an finite abelian extension of a
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number field. Then

h(α) ≥ c

D

(

log log 5D

log 2D

)13

, (13)

where the constant c depends only on the number field, not on its abelian
extension. Amoroso and Delsinne [9] have recently improved this result, for
instance essentially reducing the exponent 13 to 4.

Analogues of Dobrowolski’s Theorem have been proved for elliptic curves
by Anderson and Masser [12], Hindry and Silverman [84], Laurent [93] and
Masser [104]. In particular Masser proved that for an elliptic curve E defined
over a number field K and a nontorsion point P defined over a degree ≤ d

extension F of K that the canonical height ĥ(P ) satisfies

ĥ(P ) ≥ C

d3(log d)2
.

Here C depends only on E and K. When E has non-integral j-invariant
Hindry and Silverman improved this bound to ĥ(P ) ≥ C

d2(log d)2
. In the case

where E has complex multiplication, however, Laurent obtained the stronger
bound

ĥ(P ) ≥ C

d
(log log d/ log d)3

.

This is completely analogous to the formulation of Dobrowolski’s result (11)
in terms of the Weil height h(α) = log M(α)/d.

5. Restricted results of Lehmer strength: M(α) > c > 1.

5.1. Results for nonreciprocal algebraic numbers and polynomials.

Recall that a polynomial P (z) of degree d is said to be reciprocal if it satisfies
z

d
P (1/z) = ±P (z). (With the negative sign, clearly P (z) is divisible by z−1.)

Furthermore an algebraic number α is reciprocal if it is conjugate to α
−1 (as

then Pα is a reciprocal polynomial). One might at first think that it should
be possible to prove stronger results on Lehmer’s problem if we restrict our
attention to reciprocal polynomials. However, this is far from being the case:
reciprocal polynomials seem to be the most difficult to work with, perhaps
because cyclotomic polynomials are reciprocal; we can prove stronger results
on Lehmer’s problem if we restrict our attention to nonreciprocal polynomials!

The first result in this direction was due to Breusch [44]. Strangely, this
paper was unknown to number theorists until it was recently unearthed by
Narkiewicz. Breusch proved that for α a nonreciprocal algebraic integer

M(α) ≥ M(z3 − z
2 − 1

4
) = 1.1796 . . . . (14)

Breusch’s argument is based on the study of the resultant of α and α
−1, for

α a root of P . On the one hand, this resultant must be at least 1 in modulus.
But, on the other hand, this is not possible if M(P ) is too close to 1, because

then all the distances |αi − α
−1

i | are too small. (Note that αi = α
−1

i implies
that P is reciprocal.)
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In 1971 Smyth [155] independently improved the constant in (14), showing
for α a nonreciprocal algebraic integer

M(α) ≥ M(z3 − z − 1) = θ0 = 1.3247 . . . , (15)

the real root of z
3 − z − 1 = 0. This constant is best possible here, z

3 − z − 1
being nonreciprocal. Equality M(α) = θ0 occurs only for α conjugate to
(±θ0)

±1/k for k some positive integer.2 Otherwise in fact M(α) > θ0 + 10−4

([156]), so that θ0 is an isolated point in the spectrum of Mahler measures
of nonreciprocal algebraic integers. The lower bound 10−4 for this gap in the
spectrum was increased to 0.000260 . . . by Dixon and Dubickas [52, Th. 15].
It would be interesting to know more about this spectrum. All of its known
small points come from trinomials, or their irreducible factors:

1.324717959 · · · = M(z3 − z − 1) = M( z5−z4−1

z2−z+1
);

1.349716105 · · · = M(z5 − z
4 + z

2 − z + 1) = M( z7
+z2

+1

z2+z+1
);

1.359914149 · · · = M(z6 − z
5 + z

3 − z
2 + 1) = M( z8

+z+1

z2+z+1
);

1.364199545 · · · = M(z5 − z
2 + 1);

1.367854634 · · · = M(z9 − z
8 + z

6 − z
5 + z

3 − z + 1) = M( z11
+z4

+1

z2+z+1
).

The smallest known limit point of nonreciprocal measures is

lim
n→∞

M(zn + z + 1) = 1.38135 . . .

([31]). The spectrum clearly contains the set of all Pisot numbers, except
perhaps the reciprocal ones. But in fact it does contain those too, a result
due to Boyd [36, Proposition 2]. There are however smaller limit points of
reciprocal measures (see [33], [42] ).

The method of proof of (15) was based on the Maclaurin expansion of the
rational function F (z) = P (0)P (z)/zd

P (1/z), which has integer coefficients
and is nonconstant for P nonreciprocal. This idea had been used in 1944
by Salem [133] in his proof that the set of Pisot numbers is closed, and
in the same year by Siegel [147] in his proof that θ0 is the smallest Pisot
number. One can write F (z) as a quotient f(z)/g(z) where f and g are
both holomorphic and bounded above by 1 in modulus in the disc |z| < 1.
Furthermore, f(0) = g(0) = M(P )−1. These functions were first studied by
Schur [146], who completely specified the conditions on the coefficients of a
power series

∑∞
n=0

cnz
n for it to belong to this class. Then study of functions

of this type, combined with the fact that the series of their quotient has integer
coefficients, enables one to get the required lower bound for M(P ). To prove
that θ0 is an isolated point of the nonreciprocal spectrum, it was necessary
to consider the quotient F (z)/F1(z), where F1(z) = P1(0)P1(z)/zd

P1(1/z).
Here P1 is chosen as the minimal polynomial of some (±θ0)

±1/k so that, if
F (z) = 1 + akz

k + . . . , where ak 6= 0 then also F1(z) ≡ 1 + akz
k (mod z

k+1).

2As Boyd [36] pointed out, however, this does not preclude the possibility of equality

for some reciprocal α. But it was proved by Dixon and Dubickas [52, Cor. 14] that this

could not happen.
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Thus this quotient, assumed nonconstant, had a first nonzero term of higher
order, enabling one to show that M(P ) > θ0 + 10−4.

5.2. Nonreciprocal case: generalizations. Soon afterwards Schinzel [137]
and then Bazylewicz [15] generalised Smyth’s result to polynomials over Kro-
neckerian fields. (These are fields that are either totally real extensions of the
rationals, or totally nonreal quadratic extensions of such fields.) For a further
generalisation to polynomials in several variables see [142, Theorem 70]. In
these generalisations the optimal constant is obtained. If the field does not
contain a primitive cube root of unity ω3 then the best constant is again θ0,
while if it does contain ω3 then the best constant is the maximum modulus
of the roots θ of θ

2 − ω3θ − 1 = 0.
Generalisations to algebraic numbers were proved by Notari [116] and

Lloyd-Smith [97]. See also Skoruppa’s Heights notes [154] and Schinzel [142].

5.3. The case where Q(α)/Q is Galois. In 1999 Amoroso and David [4],
as a Corollary of a far more general result concerning heights of points on
subvarieties of Gn

m
, solved Lehmer’s problem for Q(α)/Q a Galois extension:

they proved that there is a constant c > 1 such that if α is not zero or a root
of unity and Q(α) is Galois of degree d then M(α) ≥ c.

5.4. Other restricted results of Lehmer strength. Mignotte [109, Cor.
2] proved that if α is an algebraic number of degree d such that there is a
prime less than d log d that is unramified in the field Q(α) then M(α) ≥ 1.2.

Mignotte [109, Prop. 5] gave a very short proof, based on an idea of
Dobrowolski, of the fact that for an irreducible noncyclotomic polynomial P

of length L = ||P ||1 that M(P ) ≥ 21/2L. For a similar result (where 21/2L is
replaced by 1 + 1/(6L)), see Stewart [159].

In 2004 P. Borwein, Mossinghoff and Hare [28] generalised the argument in
[155] to nonreciprocal polynomials P all of whose coefficients are odd, proving
that in this case

M(P ) ≥ M(z2 − z − 1) = φ.

Here φ = (1+
√

5)/2. This lower bound is clearly best possible. Recently Bor-
wein, Dobrowolski and Mossinghoff have been able to drop the requirement
of nonreciprocality: they proved in [27] that for a noncyclotomic irreducible
polynomial with all odd coefficients then

M(P ) ≥ 51/4 = 1.495348 . . . . (16)

In the other direction, in a search [28] of polynomials up to degree 72 with
coefficients ±1 and no cyclotomic factor the smallest Mahler measure found
was M(z6 + z

5 − z
4 − z

3 − z
2 + z + 1) = 1.556030 . . . .

Dobrowolski, Lawton and Schinzel [59] first gave a bound for the Mahler
measure of an noncyclotomic integer polynomial P in terms of the number k
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of its nonzero coefficients:

M(P ) ≥ 1 +
1

expk+1
2k2

. (17)

Here expk+1
is the (k + 1)-fold exponential. This was later improved by

Dobrowolski [56] to 1 + 1

13911
exp(−2.27kk), and lately [57] to

M(P ) ≥ 1 +
1

exp(a3b(k−2)/4ck2 log k)
, (18)

where a < 0.785. Furthermore, in the same paper he proves that if P has no
cyclotomic factors then

M(P ) ≥ 1 +
0.31

k!
. (19)

With the additional restriction that P is irreducible, Dobrowolski [55] gave
the lower bound

M(P ) ≥ 1 +
log(2e)

2e
(k + 1)−k

. (20)

In [57] he strengthened this to

M(P ) ≥ 1 +
0.17

2mm!
, (21)

where m = dk/2e.
Recently Dobrowolski [58] has proved that for an integer symmetric n × n

matrix A with characteristic polynomial χA(x), the reciprocal polynomial
z

n
χA(z +1/z) is either cyclotomic or has Mahler measure at least 1.043. The

Mahler measure of A can then be defined to be the Mahler measure of this
polynomial. McKee and Smyth [100] have just improved the lower bound
in Dobrowolski’s result to the best possible value τ0 = 1.176 . . . coming from
Lehmer’s polynomial. The adjacency matrix of the graph below is an example
of a matrix where this value is attained.

The Mahler measure of a graph, defined as the Mahler measure of its
adjacency matrix, has been studied by McKee and Smyth [99]. They showed
that its Mahler measure was either 1 or at least τ0, the Mahler measure of the
graph . They further found all numbers in the interval [1, φ] that
were Mahler measures of graphs. All but one of these numbers is a Salem
number.

6. Restricted results where M(α) > C
d.

6.1. Totally real α. Suppose that α is a totally real algebraic integer of
degree d, α 6= 0 or ±1. Then Schinzel [137] proved that

M(α) ≥ φ
d/2

. (22)

A one-page proof of this result was later provided by Höhn and Skoruppa [86].
The result also holds for any nonzero algebraic number α in a Kroneckerian
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field, provided |α| 6= 1. Amoroso and Dvornicich [10, p. 261] gave the inter-

esting example of α = 1

2

√

3 +
√
−7, not an algebraic integer, where |α| = 1,

Q(α) is Kroneckerian, but M(α) = 2 < φ
2.

Smyth [157] studied the spectrum of values M(α)1/d in (1,∞). He showed
that this spectrum was discrete at first, and found its smallest four points.
The method used is semi-infinite linear programming (continuous real vari-
ables and a finite number of constraints), combined with resultant informa-
tion. One takes a list of judiciously chosen polynomials Pi(x), and then finds
the largest c such that for some ci ≥ 0

log
+
|x| ≥ c −

∑

i

ci log |Pi(x)| (23)

for all real x. Then, averaging this inequality over the conjugates of α, one
gets that M(α) ≥ e

c, unless some Pi(α) = 0.
Two further isolated points were later found by Flammang [80], giving

the six points comprising the whole of the spectrum in (1, 1.3117). On the
other hand Smyth also showed that this spectrum was dense in (`,∞), where
` = 1.31427 . . . . The number ` is limn→∞ M(αn), where β0 = 1 and βn, of
degree 2n, is defined by βn − β

−1

n = βn−1(n ≥ 1). The limiting distribution
of the conjugates of βn was studied in detail by Davie and Smyth [51]. It is
highly irregular: indeed, the Hausdorff dimension of the associated probability
measure is 0.800611138269168784 . . . . It is the invariant measure of the map
C → C taking t 7→ t − 1/t, whose Julia set (and thus the support of the
measure) is R.

Bertin [17] pointed out that from a result of Matveev (22) could be strength-
ened when α was a nonunit.

6.2. Langevin’s Theorem. In 1988 Langevin [92] proved the following gen-
eral result, which included Schinzel’s result (22) as a special case (though not
with the explicit and best constant given by Schinzel). Suppose that V is an
open subset of C that has nonempty intersection with the unit circle |z| = 1,
and is stable under complex conjugation. Then there is a constant C(V ) > 1
such that for every irreducible monic integer polynomial P of degree d having
all its roots outside V one has M(P ) > C(V )d. The proof is based on the
beautiful result of Kakeya to the effect that, for a compact subset of C stable
under complex conjugation and of transfinite diameter less than 1 there is
a nonzero polynomial with integer coefficients whose maximum modulus on
this set is less than 1. (Kakeya’s result is applied to the unit disc with V

removed.) For Schinzel’s result take V = C\R, C(R) = φ
1/2, where the value

of C(R) given here is best possible. It is of course of interest to find such best
possible constants for other sets V .

Stimulated by Langevin’s Theorem, Rhin and Smyth [129] studied the case
where the subset of C was the sector Vθ = {z ∈ C : | arg z| > θ}. They found
a value C(Vθ) > 1 for 0 ≤ θ ≤ 2π/3, including 9 subintervals of this range for
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which the constants found were best possible. In particular, the best constant
C(Vπ/2) was evaluated. This implied that for P (z) irreducible, of degree d,
having all its roots with positive real part and not equal to z−1 or z

2 − z +1
we have

M(P )1/d ≥ M(z6 − 2z5 +4z4 − 5z3 +4z2 − 2z +1)1/6 = 1.12933793 . . . , (24)

all roots of z
6 − 2z5 + 4z4 − 5z3 + 4z2 − 2z + 1 having positive real part.

Curiously, for some root α of this polynomial, α + 1/α = θ
2

0
, where as above

θ0 is the smallest Pisot number.
Recently Rhin and Wu [131] extended these results, so that there are now

13 known subintervals of [0, π] where the best constant C(Vθ) is known. It
is of interest to see what happens as θ tends to π; maybe one could obtain
a bound connected to Lehmer’s original problem. Mignotte [112] has looked
at this, and has shown that for θ = π − ε the smallest limit point of the
set M(P )1/d for P having all its roots outside Vθ is at least 1 + cε

3 for some
positive constant c.

Dubickas and Smyth [73] applied Langevin’s Theorem to the annulus

V (R−γ
, R) = {z ∈ C | R

−γ
< |z| < R},

where R > 1 and γ > 0, proving that the best constant C(V (R−γ
, R)) is

R
γ/(1+γ).

6.3. Abelian number fields. In 2000 Amoroso and Dvornicich [10] showed
that when α is a nonzero algebraic number, not a root of unity, and Q(α)
is an abelian extension of Q then M(α) ≥ 5d/12. They also give an example
with M(α) = 7d/12. It would be interesting to find the best constant c > 1
such that M(α) ≥ c

d for these numbers. Baker and Silverman [13], [151],
[14] generalised this lower bound first to elliptic curves, and then to abelian
varieties of arbitrary dimension.

6.4. Totally p-adic fields. Bombieri and Zannier [25] proved an analogue
of Schinzel’s result (22) for ‘totally p-adic’ numbers: that is, for algebraic
numbers α of degree d all of whose conjugates lie in Qp. They showed that
then M(α) ≥ c

d
p, for some constant cp > 1.

6.5. The heights of Zagier and Zhang and generalisations. Zagier [171]
gave a result that can be formulated as proving that the Mahler measure of
any irreducible nonconstant polynomial in Z[(x(x − 1)] has Mahler measure
at least φ

d/2, apart from ±(x(x−1)+1). Doche [60, 61] studied the spectrum
resulting from the measures of such polynomials, giving a gap to the right of
the smallest point φ

1/2, and finding a short interval where the smallest limit
point lies. He used the semi-infinite linear programming method outlined
above. For this problem, however, finding the second point of the spectrum
seems to be difficult. Zagier’s work was motivated by a far-reaching result of
Zhang [173] (see also [169, p. 103]) for curves on a linear torus. He proved
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that for all such curves, apart from those of the type x
i
y

j = ω, where i, j ∈ Z

and ω is a root of unity, there is a constant c > 0 such that the curve has only
finitely many algebraic points (x, y) with h(x)+h(y) ≤ c. Zagier’s result was
for the curve x + y = 1.

Following on from Zhang, there have been recent deep and diverse gener-
alisations in the area of small points on subvarieties of Gn

m
. In particular see

Bombieri and Zannier [24], Schmidt [145] and Amoroso and David [5, 6, 7, 8].
Rhin and Smyth [130] generalised Zagier’s result by replacing polynomials

in Z(x(x − 1)) by polynomials in Z[Q(x)], where Q(x) ∈ Z[x] is not ± a
power of x. Their proof used a very general result of Beukers and Zagier
[21] on heights of points on projective hypersurfaces. Noticing that Zagier’s
result has the same lower bound as Schinzel’s result above for totally real α,
Samuels [135] has recently shown that the same lower bound holds for a more
general height function. His result includes those of both Zagier and Schinzel.
The proof is also based on [21].

7. Lower bounds for α

7.1. General lower bounds. We know that any lower bound for M(α)
immediately gives a corresponding lower bound for α , using (9). For instance,
from [164] it follows that for α of degree d > 2 and not a root of unity

α ≥ 1 +
1

4d

(

log log d

log d

)3

. (25)

Some lower bounds, though asymptotically weaker, are better for small de-
grees. For example Matveev [105] has shown that for such α

α ≥ exp
log(d + 0.5)

d2
, (26)

which is better than (25) for d ≤ 1434 (see [132]). Recently Rhin and Wu
have improved (26) for d ≥ 13 to

α ≥ exp
3 log(d/2)

d2
, (27)

which is better than (25) for d ≤ 6380. See also the paper of Rhin and Wu
in this volume.

Matveev [105] also proves that if α is a reciprocal (conjugate to α
−1) alge-

braic integer, not a root of unity, then α ≥ (p− 1)1/(pm), where p is the least
prime greater than m = n/2 ≥ 3.

Indeed, Dobrowolski’s first result in this area [53] was for α rather than
M(α): he proved that

α > 1 +
log d

6d2
.
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His argument is a beautifully simple one, based on the use of the power sums
sk =

∑d
i=1

α
k
i , the Newton identities, and the arithmetic fact that, for any

prime p, skp ≡ sk (mod p).
The strongest asymptotic result to date in the direction of the Schinzel-

Zassenhaus conjecture is due to Dubickas [62]: that given ε > 0 there is a
constant d(ε) such than any nonzero algebraic integer α of degree d > d(ε)
not a root of unity satisfies

α > 1 +

(

64

π2
− ε

)(

log log d

log d

)3
1

d
. (28)

Cassels [46] proved that if an algebraic number α of degree d has the prop-
erty α ≤ 1 + 1

10d2 then at least one of the conjugates of α has modulus 1.
Although this result has been superseded by Dobrowolski’s work, Dubickas
[66] applied the inequality

∏

k<j

|zkzj − 1| ≤ n
n/2

(

n
∏

m=1

max(1, |zm|)
)n−1

(29)

for complex numbers z1, . . . , zn, a variant of one in [46], to prove that

M(α)2

∣

∣

∣

∏

log |αi|
∣

∣

∣

1/d

≥ 1/(2d)

for a nonreciprocal algebraic number α of degree d with conjugates αi.

7.2. The house α for α nonreciprocal. The Schinzel-Zassenhaus conjec-
ture (8) restricted to nonreciprocal polynomials follows from Breusch’s result
above, with c = log 1.1796 · · · = 0.165 . . . , using (9). Independently Cassels
[46] obtained this result with c = 0.1, improved by Schinzel to 0.2 ([136]),
and by Smyth [155] to log θ0 = 0.2811 . . . . He also showed that c could not
exceed 3

2
log θ0 = 0.4217 . . . . In 1985 Lind and Boyd (see [34]), as a result

of extensive computation (see Section 8), conjectured that, for degree d, the
extremal α are nonreciprocal and have ∼ 2

3
d roots outside the unit circle.

What a contrast with Mahler measure, where all small M(α) are reciprocal!
This would imply that the best constant c is 3

2
log θ0. In 1997 Dubickas [64]

proved that c > 0.3096 in this nonreciprocal case.

7.3. The house of totally real α. Suppose that α is a totally real algebraic
integer. If α ≤ 2 then by [90, Theorem 2] α is of the form ω + 1/ω, where ω

is a root of unity. If for some δ > 0 we have 2 < α ≤ 2 + δ
2
/(1 + δ), then, on

defining γ by γ + 1/γ = α, we see that γ and its conjugates are either real
or lie on the unit circle, and 1 < γ ≤ 1 + δ. This fact readily enables us to
deduce a lower bound greater than 2 for α whenever we have a lower bound
greater than 1 for γ . Thus from (7) [144] it follows that for α not of the form
2 cosπr for any r ∈ Q

α ≥ 2 + 4−2d−3 (30)
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[144]. In a similar way (28) above implies that for such α, and d > d(ε) that

α > 2 +

(

4096

π4
− ε

)(

log log d

log d

)6
1

d2
(31)

[62]. However Dubickas [63] managed to improve this lower bound to

α > 2 + 3.8
(log log d)3

d(log d)4
. (32)

He improved the constant 3.8 to 4.6 in [64].

7.4. The Kronecker constant. Callahan, Newman and Sheingorn [48] de-
fine the Kronecker constant of a number field K to be the least ε > 0 such
that α ≥ 1 + ε for every algebraic integer α ∈ K. The truth of the Schinzel-
Zassenhaus conjecture (8) would imply that the Kronecker constant of K is
at least c/[K : Q]. They give [48, Theorem 2] a sufficient condition on K for
this to be the case. They also point out, from considering αα − 1, that if α

is a nonzero algebraic integer not a root of unity in a Kroneckerian field then
α ≥

√
2 (See also [111]), so that the Kronecker constant of a Kroneckerian

field is at least
√

2 − 1.

8. small values of M(α) and α

8.1. Small values of M(α). The first recorded computations on Mahler
measure were performed by Lehmer in his 1933 paper [94]. He found the
smallest values of M(α) for α of degrees 2, 3 and 4, and the smallest M(α)
for α reciprocal of degrees 2, 4, 6 and 8. Lehmer records the fact that Poulet
(?unpublished) “. . . has made a similar investigation of symmetric polynomi-
als with practically the same results”. Boyd has done extensive computations,
searching for ‘small’ algebraic integers of various kinds. His first major pub-
lished table was of Salem numbers less than 1.3 [29], with four more found in
[30]. Recall that these are positive reciprocal algebraic integers of degree at
least 4 having only one conjugate (the number itself) outside the unit circle.
These numbers give many examples of small Mahler measures, most notably
(from (2)) M(L) = 1.176 . . . from the Lehmer polynomial itself, which is the
minimal polynomial of a Salem number. In later computations [32], [38], he
finds all reciprocal α with M(α) ≤ 1.3 and degree up to 20, and those with
M(α) ≤ 1.3 and degree up to 32 having coefficients in {−1, 0, 1} (‘height 1’).

Mossinghoff [114] extended Boyd’s tables from degree 20 to degree 24 for
M(α) < 1.3, and to degree 40 for height 1 polynomials, finding four more
Salem numbers less than 1.3. He also has a website [115] where up-to-date ta-
bles of small Salem numbers and Mahler measures are conveniently displayed
(though unfortunately without their provenance). Flammang, Grandcolas
and Rhin [82] proved that Boyd’s table, with the additions by Mossinghoff,
of the 47 known Salem numbers less than 1.3 is complete up to degree 40. Re-
cently Flammang, Rhin and Sac-Épée [83] have extended these tables, finding
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all M(α) < θ0 for α of degree up to 36, and all M(α) < 1.31 for α of degree
up to 40. This latter computation showed that the earlier tables of Boyd and
Mossinghoff for α of degree up to 40 with M(α) < 1.3 are complete.

8.2. Small values of α . Concerning α , Boyd [34] gives tables of the
smallest values of α for α of degree d up to 12, and for α reciprocal of degree
up to 16. Further computation has recently been done on this problem by
Rhin and Wu [132]. They computed the smallest house of algebraic numbers
of degree up to 28. All are nonreciprocal, as predicted by Boyd’s conjecture
(see Section 7.2). Their data led the authors to conjecture that, for a given
degree, an algebraic number of that degree with minimal house was a root of
a polynomial consisting of at most four monomials.

9. Mahler measure and the discriminant

9.1. Mahler [103] showed that for a complex polynomial

P (z) = a0z
d + · · · + ad = a0(z − α1) . . . (z − αd)

its discriminant disc(P ) = a
2d−2

0

∏

i<j(αi − αj)
2 satisfies

| disc(P )| ≤ d
d
M(P )2d−2

. (33)

From this it follows immediately that if there is an absolute constant c > 1
such that | disc(P )| ≥ (cd)d for all irreducible P (z) ∈ Z[z], then M(P ) ≥
c
d/(2d−2), which would solve Lehmer’s problem. This consequence of Mahler’s

inequality has been noticed in various variants by several people, including
Mignotte [109] and Bertrand [16].

In 1996 Matveev [106] showed that in Dobrowolski’s inequality, the degree
d ≥ 2 of α could be replaced by a much smaller (for large d) quantity

δ = max(d/ disc(α)1/d
, δ0(ε))

for those α for which α
p had degree d for all primes p. (Such α do not include

any roots of unity.) Specifically, he obtained for given ε > 0

M(α) ≥ exp

(

(2 − ε)

(

log log δ

log δ

)

3
)

(34)

for these α.
Mahler [103] also gives the lower bound

δ(P ) >

√
3| disc(P )|1/2

d
−(d+2)/2

M(P )−(m−1) (35)

for the minimum distance δ(P ) = mini<j |αi − αj| between the roots of P .
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9.2. Generalisation involving the discriminant of Schinzel’s lower

bound. Rhin [127] generalised Schinzel’s result (22) by proving, for α a to-
tally positive algebraic integer of degree d at least 2 that

M(α) ≥
(

δ1 +
√

δ2

1
+ 4

2

)d/2

. (36)

Here δ1 = | disc(α)|1/d(d−1). This result apparently also follows from an earlier
result of Zäımi [172] concerning a lower bound for a weighted product of the
moduli of the conjugates of an algebraic integer — see the Math Review of
Rhin’s paper.

10. Properties of M(α) as an algebraic number

A Perron number is an algebraic integer with exactly one conjugate of
maximum modulus. It is clear from (2) that M(α) is a Perron number for
any algebraic integer α; this seems to have been first observed by Adler
and Marcus [1] (see [36]). In the other direction: is the Perron number
1 +

√
17 a Mahler measure? See Schinzel [143], Dubickas [71]. Dubickas [70]

proves that for any Perron number β some integer multiple of β is a Mahler
measure. (These papers also contains other interesting properties of the set
of Mahler measures.) Boyd [35] proves that if β = M(α) for some algebraic
integer α, then all conjugates of β other than β itself either lie in the annulus
β
−1

< |z| < β or are equal to ±β
−1.

If α were reciprocal, it might be expected that M(α) would be recipro-
cal too, while if α were nonreciprocal, then M(α) would be nonreciprocal.
However neither of these need be the case: in [36, Proposition 6] Boyd
exhibits a family of degree 4 Pisot numbers that are the Mahler measures
of reciprocal algebraic integers of degree 6, and in [36, Proposition 2] he
notes that for q ≥ 3 a root αq of the irreducible nonreciprocal polynomial

z
4 − qz

3 + (q + 1)z2 − 2z + 1 then M(αq) = 1

2
(q +

√

q2 − 4) is reciprocal.

In fact, since M( 1

2
(q +

√

q2 − 4)) = 1

2
(q +

√

q2 − 4), this also shows that a
number can be both a reciprocal and a nonreciprocal measure. See also [37].
Dixon and Dubickas [52] prove that the set of all M(α) does not form a semi-
group, as for instance

√
2 + 1 and

√
3 + 2 are Mahler measures, while their

product is not. (In terms of polynomials, this set is of course equal to the set
of all M(P ) for P irreducible. If instead we take the set of all (reducible and
irreducible) polynomials, then, because of M(PQ) = M(P )M(Q) this larger
set does form a semigroup.)

In [69] Dubickas proves that the additive group generated by all Mahler
measures is the group of all real algebraic numbers, while the multiplica-
tive group generated by all Mahler measures is the group of all positive real
algebraic numbers.
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We know that M(P (z)) = M(P (±z
k)) for either choice of sign, and any

k ∈ N. Is this the only way that Mahler measures of irreducible polynomials
can be equal? Boyd [32] gives some illuminating examples to show that there
can be other reasons that make this happen. The examples were discovered
during his computation of reciprocal polynomials of small Mahler measure
(see Section 8). For example, for P6 = z

6 + 2z5 + 2z4 + z
3 + 2z2 + 2z + 1 and

P8 = z
8 + z

7 − z
6 − z

5 + z
4 − z

3 − z
2 + z + 1 we have

M(P6) = M(P8) = 1.746793 · · · = M,

say, where both polynomials are irreducible. Boyd explains how such ex-
amples arise. If αi(i = 1, . . . , 8) are the roots of P8, then for different i

M(α1αi) can equal M , M
2 or M

3. The roots of P6 are the three α1αi with
M(α1αi) = M and their reciprocals. Clearly M(α2

1
) = M

2, while for three
other αi the product α1αi is of degree 12 and has M(α1αi) = M

3. (P8 has
the special property that it has roots α1, α2, α3, α4 with α1α2 = α3α4 6= 1.)

Dubickas [67] gives a lower bound for the distance of an algebraic number
γ of degree n and leading coefficient c, not a Mahler measure, from a Mahler
measure M(α) of degree D:

|M(α) − γ| > c
−D(2 γ )−nD

. (37)

11. Counting polynomials with given Mahler measure

Let #(d, T ) denote the number of integer polynomials of degree d and
Mahler measure at most T . This function has been studied by several authors.
Boyd and Montgomery [41] give the asymptotic formula

c(log d)−1/2
d
−1 exp

(

1

π

√

105ζ(3)d

)

(1 + o(1)), (38)

where c = 1

4π2

√

105ζ(3)e−γ, for the number #(d, 1) of cyclotomic polynomials
of degree d, as d → ∞.

Dubickas and Konyagin [72] obtain by simple arguments the lower bound
#(d, T ) >

1

2
T

d+1(d + 1)−(d+1)/2, and upper bound #(d, T ) < T
d+1 exp(d2

/2),
the latter being valid for d sufficiently large. For T ≥ θ0 they derived the
upper bound #(d, T ) < T

d(1+16 log log d/ log d). Chern and Vaaler [50] obtained
the asymptotic formula Vd+1T

d+1 +Od(T
d) for #(d, T ) for fixed d, as T → ∞.

Here Vd+1 is an explicit constant (the volume of a certain star body). Recently
Sinclair [153] has produced corresponding estimates for counting functions of
reciprocal polynomials.

12. A dynamical Lehmer’s problem

Given a rational map f(α) of degree d ≥ 2 defined over a number field K,
one can define for α in some extension field of K a canonical height

hf(α) = lim
n→∞

d
−n

h(fn(α)),
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where f
n is the nth iterate of f , and h is, as before, the Weil height of α.

Then hf(α) = 0 if and only if the iterates f
n(α) form a finite set, and an

analogue of Lehmer’s problem would be to decide whether or not

hf (α) ≥ C

deg(α)

for some constant C depending only on f and K. Taking f(α) = α
d we

retrieve the Weil height and the original Lehmer problem. There seem to be
no good estimates, not even of polynomial decay, for any f not associated
to an endomorphism of an algebraic group. See [152, Section 3.4] for more
details.

13. Variants of Mahler measure

Everest and ńı Fhlathúin [77] and Everest and Pinner [78] (see also [79,
Chapter 6]) have defined the elliptic Mahler measure, based on a given el-
liptic curve E = C/L over C, where L = 〈ω1, ω2〉 ⊂ C is a lattice, with ℘L

its associated Weierstrass ℘-function. Then for F ∈ C[z] the (logarithmic)
elliptic Mahler measure mE(F ) is defined as

∫

1

0

∫

1

0

log |F (℘L(t1ω1 + t2ω2))|dt1dt2. (39)

If E is in fact defined over Q and has a rational point Q with x-coordinate
M/N then often mE(Nz − M) = 2ĥ(Q), showing that mE is connected with
the canonical height on E.

Kurokawa [91] and Oyanagi [118] have defined a q-analogue of Mahler mea-
sure, for a real parameter q. As q → 1 the classical Mahler measure is recov-
ered.

Dubickas and Smyth [74] defined the metric Mahler measure M(α) as the
infimum of

∏

i M(βi), where
∏

i βi = α. They used this to define a metric
on the group of nonzero algebraic numbers modulo torsion points, the metric
giving the discrete topology on this group if and only if Lehmer’s ‘conjecture’
is true (i.e., infα:M(α)>1 M(α) > 1).

Very recently Pritsker [122, 123] has studied an areal analogue of Mahler
measure, defined by replacing the normalised arclength measure on the unit
circle by the normalised area measure on the unit disc.

14. applications

14.1. Polynomial factorization. I first met Andrzej Schinzel at the ICM
in Nice in 1970. There he mentioned to me an application of Mahler measure
to irreducibility of polynomials. (After this we had some correspondence
about the work leading to [155], which was very helpful to me.) If a class of
irreducible polynomials had Mahler measure at least B, then any polynomial
of Mahler measure less than B

2 can have at most one factor from that class.
For instance, a trinomial z

d ± z
m ± 1 has, by Vicente Gonçalves’ inequality
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[162], [117], [124, Th. 9.1.1] M(P )2 + M(P )−2 ≤ ||P ||2
2
, Mahler measure at

most φ. Since φ < θ
2

0
, by (15) such trinomials can have at most one irreducible

noncyclotomic factor. Here ||P ||2 is the 2-norm of P (the square root of the
sum of the squares of its coefficients).

More generally Schinzel (see [54]) pointed out the following consequence
of (11): that for any fixed ε > 0 and polynomial P of degree d with integer
coefficients, the number of its noncyclotomic irreducible factors counted with
multiplicities is O(dε||P ||1−ε

2
). See also [138], [140], [121].

14.2. Ergodic theory. One-variable Mahler measures have applications in
ergodic theory. Consider an automorphism of the torus Rd

/Zd defined by a
d× d integer matrix of determinant ±1, with characteristic polynomial P (z).
Then the topological entropy of this map is log M(P ) (Lind [96] — see also
[33], [79, Theorem 2.6]).

14.3. Transcendence and diophantine approximation. Mahler measure,
or rather the Weil height h(α) = log M(α)/d, plays an important technical
rôle in modern transcendence theory, in particular for bounding the coeffi-
cients of a linear form in logarithms known to be dependent.

As remarked by Waldschmidt [169, p65], the fact that this height has three
equivalent representations, coming from (1), (2) and (4) makes it a very
versatile height function for these applications.

If α1, . . . , αn are algebraic numbers such that their logarithms are Q-linearly
dependent, then it is of importance in Baker’s transcendence method to get
small upper estimates for the size of integers m1, . . . , mn needed so that
m1 log α1 + · · · + mn log αn = 0. Such estimates can be given using Weil
heights of the αi. See [169, Lemma 7.19] and the remark after it.

Chapter 3 (‘Heights of Algebraic Numbers’) of [169] contains a wealth of in-
teresting material on the Weil height and other height functions, connections
between them, and applications. For instance, for a polynomial f ∈ Z[z] of
degree at most N for which the algebraic number α is not a root one has

|f(α)| ≥ 1

M(α)N ||f ||d−1

1

,

where ||f ||1 is the length of f , the sum of the absolute values of its coefficients,
and d = deg α ([169, p83]).

In particular, for a rational number p/q 6= α with q > 0, and f(x) = qx− p

we obtain
∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

≥ 1

M(α)q(max(|p| + q))d−1
. (40)

14.4. Distance of α from 1. From (40) we immediately get for α 6= 1

|α − 1| ≥ 1

2d−1M(α)
. (41)
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Better lower bounds for |α−1| in terms of its Mahler measure have been given
by Mignotte [110], Mignotte and Waldschmidt [113], Bugeaud, Mignotte and
Normandin [45], Amoroso [2], Dubickas [63], and [65]. For instance Mignotte
and Waldschmidt prove that

|α − 1| > exp{−(1 + ε)(d(log d)(log M(α)))1/2} (42)

for ε > 0 and α of degree d ≥ d(ε). Dubickas [63] improves the constant 1 in
this result to π/4, and in the other direction [65] proves that for given ε > 0
there is an infinite sequences of degrees d for which an α of degree d satisfies

|α − 1| < exp

{

−(c − ε)

(

d log M(α)

log d

)1/2
}

. (43)

Here Dubickas uses the following simple result: if F ∈ C[z] has degree t and
F

′(1) 6= 0 then there is a root a of F such that |a − 1| ≤ t|F (1)/F ′(1)|.

14.5. Shortest unit lattice vector. Let K be a number field with unit
lattice of rank r, and M = min M(α), the minimum being taken over all
units α ∈ K, α not a root of unity. Kessler [89] showed that then the shortest

vector λ in the unit lattice has length ||λ||2 at least
√

2

r+1
log M .

14.6. Knot theory. Mahler measure of one-variable polynomials arises in
knot theory in connection with Alexander polynomials of knots and reduced
Alexander polynomials of links — see Silver and Williams [148]. Indeed, in
Reidemeister’s classic book on the subject [126], the polynomial L(−z) ap-
pears as the Alexander polynomial of the (−2, 3, 7)-pretzel knot. Hironaka
[85] has shown that among a wide class of Alexander polynomials of pretzel
links, this one has the smallest Mahler measure. Champanerkar and Kofman
[47] study a sequence of Mahler measures of Jones polynomials of hyperbolic
links Lm obtained using (−1/m)-Dehn surgery, starting with a fixed link.
They show that it converges to the Mahler measure of a 2-variable polyno-
mial. (The many more applications of Mahler measures of several-variable
polynomials to geometry and topology are outside the scope of this survey.)

15. Final remarks

15.1. Other sources on Mahler measure. Books covering various aspects
of Mahler measure include the following: Bertin and Pathiaux-Delefosse [19],
Bertin et al [20], Bombieri and Gubler [23], Borwein [26], Schinzel [139],
Schinzel [142], Waldschmidt [169].

Survey articles and lecture notes on Mahler measure include: Boyd [31],
Boyd [33], Everest [76], Hunter [87], Schinzel [141], Skoruppa [154], Stewart
[159], Vaaler [160], Waldschmidt [167].
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15.2. Memories of Mahler. As one of a small group of undergraduates in
ANU, Canberra in the mid-1960s, we were encouraged to attend graduate
courses at the university’s Institute of Advanced Studies, where Mahler had
a research chair. I well remember his lectures on transcendence with his
blackboard copperplate handwriting, all the technical details being carefully
spelt out.
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Séminaire Delange-Pisot-Poitou, 19e année: 1977/78, Théorie des nombres, Fasc. 2,
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algébriques, Canad. J. Math. 45 (1993), 176–224.

[169] , Diophantine approximation on linear algebraic groups. Transcendence prop-
erties of the exponential function in several variables, Grundlehren der Mathematis-

chen Wissenschaften 326. Springer-Verlag, Berlin, 2000.

[170] E. Weiss, Algebraic number theory, McGraw-Hill Book Co., Inc., New York-San

Francisco-Toronto-London 1963.

[171] D. Zagier, Algebraic numbers close to both 0 and 1, Math. Comp. 61 (1993), 485–491.
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